World Class Design | World Class Function | 30 Years Expertise in Industrial Motor Control

DC MOTOR DRIVE PL / PLX

HG105281EN00 Issue 1 (03/2024)

Product Manual

Please read this information before installing or using the product.

Install, use and maintain this product following the procedures provided.

The manual(s) cannot provide all details, variations and contingencies required for your installation, operation and maintenance of this product or the apparatus with this product installed. For further help or information, refer to your local Supplier sales office.

Application area

The equipment described is intended for industrial (non-consumer) motor speed control.

Intended users

To safely enable the user to obtain maximum benefit from the equipment:

- Ensure this information is available to all persons required to install, configure or service the described equipment or any other associated operation.
- Always store the manual in a conveniently accessible area for quick reference.
- Make it available for the next user/owner of the product.

This product is of the restricted sales distribution class according to IEC 61800-3 and has a "professional equipment" designation as defined in EN 61000-3-2.

Safety

Ensure all users and operators understand the included WARNINGS, CAUTIONS and NOTES, which alert the user to safety issues. COMPLY WITH WARNINGS AND CAUTIONS AT ALL TIMES. Each of these carries a special meaning and should be read carefully:

WARNING!

A WARNING is given when non-compliance with the warning may result in personal injury and/or equipment damage.

CAUTION!

A CAUTION is given when non-compliance with the caution may result in permanent equipment damage.

NOTE A note provides specific information to make important instructions clear.

Symbols

Attention	Electrostatic Discharge (ESD)	Electric Shock Hazard
See the instructions for use. Specific warnings not found on the label.	This equipment contains ESD sensitive parts. Observe static control precautions when handling, installing and servicing this product.	Disconnect the mains supply before working on the unit. Do not touch presets, switches and jumpers! Always use the correct insulated adjustment tools.

WARNING!

Only qualified personnel must install, operate and maintain this equipment. A qualified person is someone technically competent and familiar with all safety information, established safety practices, installation, operation, maintenance and the hazards involved with this equipment and any associated machinery.

Hazards

This equipment can endanger life through rotating machinery and high voltages.

WARNING! PERSONAL INJURY AND/OR ELECTRICAL SHOCK HAZARD

- Always isolate all power supplies from the equipment before starting any work.
- Never perform high voltage resistance checks on the wiring without first disconnecting the product from the circuit under test.
- Use guarding and additional safety systems to prevent injury and electric shock.
- Metal parts may reach 90°C during operation.

CAUTION! EQUIPMENT DAMAGE HAZARD

- We thoroughly test our products. However, before installation and start-up, inspect all equipment for transit damage, loose parts, packing materials, etc.
- Installation must observe the required environmental conditions for safe and reliable operation.
- In a domestic environment, this product may cause radio interference, requiring adequate measures to be taken. Obtain the permission of the supply authority before connecting to the low voltage supply.

General risks

Installation

- Ensure mechanically secure fixings are in use as recommended.
- Ensure cooling airflow around the product is as recommended.
- Ensure cables/wire terminations are as recommended and are torqued correctly.
- Ensure the product rating is correct do not exceed the rating.

Application risk

Electromechanical safety is the responsibility of the user. The integration of this product into other apparatus or systems is not the manufacturer's or distributor of the product's responsibility. It is the user's responsibility to ensure the compliance of the installation with any regulations in force.

Health and safety at work

Electrical devices can constitute a safety hazard. Thorough personnel training is an aid to SAFETY and productivity. SAFETY awareness not only reduces the risk of accidents and injuries in your plant but also has a direct impact on improving product quality and costs. If you have any doubts about the SAFETY of your system or process, consult an expert immediately. Do not proceed without doing so. If in doubt, refer to the Supplier.

Weight

Consideration should be given to the weight of our heavier products when handling.

Risk assessment

Under fault conditions or conditions not intended: the motor speed may be incorrect; the motor speed may be excessive; the direction of rotation may be incorrect; the motor may be energised.

In all situations, the user should provide sufficient guarding and/or additional redundant monitoring and safety systems to prevent risk of injury.

NOTE: During a power loss event, the product will commence a sequenced shut-down procedure. Therefore, the system designer must provide suitable protection for this case.

Maintenance

Only qualified personnel should maintain and effect repair using only the recommended spares, alternatively return the equipment to the factory for repair. The use of unapproved parts may create a hazard and risk of injury.

WARNING!

PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

When replacing a product, all user-defined parameters that define the product's operation must be installed correctly before returning to use. Failure to do so may create a hazard and risk of injury.

The packaging is inflammable and incorrect disposal may lead to the generation of lethal toxic fumes.

Repairs

Repair reports can only be given if the user makes sufficient and accurate defect reporting. Remember that the product without the required precautions can represent an electrical hazard and risk of injury, and that rotating machinery is a mechanical hazard.

Protective insulation

Isolated product

WARNING!

The drive and motor must be connected to an appropriate safety earth. Failure to do so presents an electrical shock hazard. Exposed metal work in this equipment is protected by basic insulation and bonding to a safety earth.

This product is classified as a component and must be used in a suitable enclosure.

- 1. This is achieved through basic insulation and protective earth grounding, or doubleinsulation to provide SELV Control Circuits.
- 2. This protection allows a safe connection to other low voltage equipment.
- 3. Earth bonding is the responsibility of the installer.

Hazards

The following WARNINGS are contained in the text of this manual.

The Hazard symbols are page links in the pdf of this manual.

WARNING! PERSONAL INJURY HAZARD

Read and understand the General Risks given at the front of this manual when performing measurements and investigating failures. This applies to electrical and mechanical systems.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

Electric shock risk! Electrical devices constitute a safety hazard.

Do not attempt to commission the PL/X unless you:

• are qualified and have the knowledge and skills to use it safely.

• thoroughly understand the operation of the machine which has the PL/X installed.

• have read and understood this document, and are familiar with electrical wiring and safety standards.

Only use qualified personnel to design, construct, operate and maintain your systems.

Ensure personnel who use or maintain the equipment know of all hazards involved in your equipment and processes.

If you have any doubts about the safety of your system or process, do not proceed without first consulting an expert.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

Before beginning to connect the drive, make sure that all power is OFF.

Make sure that power and control wiring are routed in separate conduit / cable trays and that wiring meets all applicable national and local electrical regulations.

Make sure that the voltages on the EL1/EL2/EL3 terminals are in-phase with the voltages on L1/L2/L3.

For reliable operation, the PL/X must control the supply side or dc side contactor through its CON1 and CON2 terminals.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

Perform the QuickStart steps ("3 QuickStart Guide" on page 12) as written and in the correct sequence.

WARNING! EQUIPMENT DAMAGE HAZARD

It may be necessary for installations to have over-riding external independent systems for de-energising the supply side or dc contactor. In this case, we recommend that the CSTOP terminal is opened 100 ms prior to de-energising the supply side or dc side contactor. Failure to achieve this may result in damage to the PL/X.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

When using a dc side contactor, the armature **MUST** be connected to remote sense terminals T41 and T43, as shown on Page 54, to ensure that the PL/X can measure armature voltage when the dc side contactor is de-energised. Failure to do this will cause a flashover of the commutator because the AVF feedback is lost when the contactor opens.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

Ensure that all wiring is electrically isolated and cannot be made "live" unintentionally by other personnel.

If performing high voltage or dielectric tests on the motor or wiring, you **must** disconnect the PL/X first. Failure to do so will invalidate Warranty.

WARNING! PERSONAL INJURY HAZARD

Do not rely on any drive function to prevent the motor from operating when personnel are undertaking maintenance or when machine guards are open. The Safety Codes do not accept electronic control as a sole means of inhibition for the PL/X. Always isolate the power source before working on the PL/X or the motor or load.

WARNING! PERSONAL INJURY HAZARD

Do not use Armature Volts Feedback mode (AVF) with field weakening systems.

WARNING! EQUIPMENT DAMAGE HAZARD

Field reversal or disconnection.

After the PL/X inhibits the field output, it can take several seconds for the field current to decay to zero due to the high inductance of motor fields. **Do not open-circuit the field unless the field current has reached zero.** You cannot use the field current monitors or field active flag to confirm that zero current is flowing because the PL/X cannot measure the decaying current after an inhibit. You must:

- 1. Observe the current on an external instrument and time how long it takes to decay.
- 2. Use the interval timer block to implement a safety delay before opening the field circuit.

Failure to observe this warning may cause flashover of the field circuit and result in damage to the system.

WARNING! EQUIPMENT DAMAGE HAZARD

The protection provided in field weakening mode is limited to total feedback loss only because the speed/AVF relationship is not maintainable in the field weakening mode. If a partial loss of feedback occurs, the motor may run to excessive speed. When the field is entirely weakened and is at its minimum level, the armature overvoltage trip will operate. It may only occur at dangerous speeds. Therefore, we recommend using a mechanical device, a backup system, or both to protect against this possibility.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

Semiconductor electronics deliver all sixteen motor drive alarms. Local safety codes may mandate the use of electro-mechanical alarm systems. **Test all alarms in the final application before use.** The manufacturer and suppliers of the PL/X are not responsible for system safety.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

Do not rely on the action of parameter 183>EXT TRIP RESET for safety.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

When using armature voltage feedback the IR drop may be sufficient to provide a signal in excess of 117>ZERO INTLK SPD * preventing the stall alarm from operating. To rectify, set 14> IR COMPENSATION as accurately as possible; then test the alarm with a stalled motor (disable the field); progressively increase current limit to above the 179>STALL CUR LEVEL; now check that the AV speed feedback remains below 117>ZERO INTLK SPD *. It may be necessary to increase 117>ZERO INTLK SPD * to ensure tripping.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

The PL/X suspends Comms operation while in CONFIGURATION mode. Refer to the FIELDBUS manual, HG105409EN00.

WARNING! PERSONAL INJURY HAZARD EQUIPMENT DAMAGE HAZARD

It is important that the parameter **680) I arm BURDEN OHMS**, is set as closely as possible to the actual resistance used on the power board. Do not allow the model current rating to exceed that stated in the rating table and on the product label found on the side of the PL/X. Failure to heed this warning will invalidate any Warranty, and violate approval standards. The manufacturer and distributor accept no liability for faults caused by rerating of the product.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

PROTECT ALL DRIVES BY USING CORRECTLY RATED SEMICONDUCTOR FUSES. Failure to do so will invalidate the Warranty.

WARNING! PERSONAL INJURY HAZARD

DO NOT use AC supply filters on supplies that are un-balanced or float with respect to earth.

The drive and AC filter MUST have a permanent earth connection. Plugs/sockets are NOT allowed in the AC supply.

The AC supply filter contains high voltage capacitors. DO NOT touch for at least 20 seconds after the removal of the AC supply.

WARNING! PERSONAL INJURY HAZARD

Safety earthing always takes precedence over EMC earthing.

The following CAUTIONS are contained in the text of this manual.

CAUTION!

Do not use field weakening when using Armature Voltage Feedback, selected in the CALIBRATION menu.

If AVF is selected and field weakening is enabled, the PL/X will trip when entering the field weakening region. **NOTE**: The action of changing feedback mode to AVF will automatically rescale the 100% speed feedback referring to **18**>RATED ARM **VOLTS**. To continue running in this mode (e.g. if tacho has failed) and prevent tripping, avoid the field weakening region remaining at a speed that produces an armature voltage below **109**>SPILLOVER AVF *. **130**>MOTOR RPM monitor will show an incorrect value unless you re-adjust

6)DESIRED MAX RPM to the base RPM.

If this trip occurs, the DRIVE TRIP MESSAGE will be SPEED FBK MISMATCH.

CAUTION! EQUIPMENT DAMAGE HAZARD

For rated field currents that are less than 25% of model rating the alarm threshold may be too low to trigger. Test the alarm. To defeat this problem, set 4> RATED FIELD AMPS to a higher level and 114>FIELD REFERENCE to a lower level to raise the threshold, e.g. set PIN 4 to twice motor rating and PIN 114 to 50.00%.

CAUTION! EQUIPMENT DAMAGE HAZARD

If, due to the mechanical arrangement of the machine it is impossible to achieve sufficiently low losses, then use a closed-loop system of tension control which could use dancing arm methods or a tension transducer loadcell feedback system.

CAUTION! EQUIPMENT DAMAGE HAZARD

The field-to-earth voltage of the motor must have the correct rating for the voltage applied to EL2.

CAUTION! EQUIPMENT DAMAGE HAZARD

Check that the calibration parameters and drive personality Iarm burden value are correct after restoring factory defaults. These may also need re-entering.

Contents:

1	Intro	duction 1				
	1.1	Product overview				
		1.1.1 Features and benefits	.2			
	1.2	PL/X principle of operation	3			
	1.3	Useful page references	4			
	1.4	Testing using a small motor	5			
	1.5	Configuration tool	5			
	1.6	Archiving PL/X Recipes	6			
	1.7	What to do in the event of a problem	6			
		171 A simple clarification of a technical issue	6			
		1.7.2 A complete system failure	.6			
		1.7.3 Finding the software version of the unit	7			
		1.7.4 How to reset the unit	.7			
		1.7.4.1 4-KEY RESET (to factory defaults)	.7			
2	Comn	nissioning	8			
-	2 1	Inderstanding main contactor eneration	0			
	2.1	2.1.1 Main contactor control O.8.A	9 10			
			10			
3	Quick	Start Guide	12			
	3.1	Introduction	12			
		3.1.1 Important safety notes	12			
	3.2	Record your CALIBRATION parameter data	14			
		3.2.1 Property "S" parameters	14			
	3.3	Installation	15			
		3.3.1 Connect the drive	15			
		3.3.1.1 Wiring diagrams	15			
		3.3.1.2 Optional feedback devices	16			
		3.3.2 Frame 1 - PL/X5-50	17			
		3.3.3 Frame 2 - PL/X65-145	18			
		3.3.4 Frame 3 - PL/X185-265	19			
		3.3.5 Frame 4 - PL/X275-440	20			
		3.3.6 Frame 5 - PL/X520-980	21			
	3.4	Essential pre-start checks	22			
		3.4.1 CHECK LIST: Mechanical	22			
		3.4.2 CHECK LIST: Electrical	23			
	3.5	Final checks BEFORE applying power	24 24			
	26	Apply control power to the DL/V	24 24			
	3.0	Appry control power to the PL/A	24			
	3.7	QuickStart steps	25			
	3.8	Options 2.9.1 Facebook	29			
		2.9.1.1 Freedback calibration	29			
		2.9.1.2 Propaging for Tacho/Encoder use	29 20			
		2.9.1.2 Frepariting Tacho/Encoder foodback type	20			
		3.8.2 Field weakening	20 20			
	~ 14		50			
4	Self-te	est messages	31			

4 Self-test messages

5	Mech	hanical installation 35					
	5.1	Cover dimensions for the PL/X family					
	5.2	Mechanical installatio	on - Frame 1 PL/X 5-50	36			
		5.2.1 Mounting the F	rame 1 PL/X 5-50	.36			
	5.3	Mechanical installatio	on - Frame 2 PL/X 65-145	37			
		5.3.1 Mounting the F	rame 2 PL/X 65-145	.37			
	5.4	Mechanical installatio	on - Frame 3 PL/X 185-265	38			
		5.4.1 Mounting the F	rame 3 PL/X 185-265	.39			
		5.4.1.1 Venting usi	ing a back panel aperture	.40			
		5.4.1.2 Venting usi	ing standoff pillars	.40			
	5.5	Mechanical installatio	on - Frame 4 PL/X 275-440	41			
		5.5.1 Mounting the F	rame 4 PL/X 275-440	.42			
	5.6	Mechanical installatio	on - Frame 5 PL/X 520-980	43			
		5.6.1 Mounting the F	rame 5 PL/X 520-980	.44			
6	Ventir	ng for PL/X 275-980		45			
	6.1	Venting summary		46			
		6.1.1 Air supply to en	nclosure	.46			
		6.1.2 Air filters		.46			
		6.1.3 Exhaust air		.46			
	6.2	Venting kit (optional)		47			
		6.2.1 Venting kit for F	PL/X 275 - 440	.48			
		6.2.2 Venting kit for F	PL/X 520 - 980	.48			
7	Electr	rical installation 49					
	7.1	Basic application wirin	ng diagram	50			
	7.2	Power wiring connecti	ions	51			
		7.2.1 Forces applied	to the power terminals	.51			
	7.3	Power wiring methods	5	52			
		7.3.1 METHOD 1 - Po	wer wiring (QuickStart)	.52			
		7.3.2 METHOD 2 - Por	wer wiring	.53			
		7.3.3 METHOD 3 - Por	wer wiring	54			
	7.4	Power wiring connecti	ions	55			
		7.4.1 Output voltage	range	56			
		7.4.2 Output current	range	56			
		7.4.3 Terminal tighte	ning torques	56			
		7.4.4 Power supplies		.57			
		7.4.4.1 Main suppl	ly inputs: L1, L2, L3	57			
		7.4.4.2 Auxiliary si	upply inputs: EL1, EL2, EL3	.57			
		7.4.4.3 Control sup	pply inputs: T51, T52, T53	.57			
		7.4.4.4 Supply inp	ut for the internal fan: B1, B2	.57			
	7.5	Control wiring method	ls	58			
		7.5.1 METHOD 1 - Co	ntrol wiring (QuickStart)	.58			
		7.5.2 METHOD 2 - Co	ntrol wiring	.59			
		7.5.3 METHOD 3 - Co	ntrol wiring	.60			
	7.6	Control wiring connec	tions	61			
		7.6.1 About digital in	puts	.62			
		7.6.1.1 RUN digita	I input	.62			
		7.6.1.2 START and	JOG digital inputs	.62			
		7.6.1.3 Encoder in	puts	62			

		7.6.2	About digital outputs	63
		7.6.	2.1 Short-circuit/overload condition	
		7.0.5	About dialog inputs	
		767	Motor thermistor	04 64
	77	Contro	I terminals electrical specification	
	7.7	Contro	l terminals - electrical specification	68
	7.9	Signal	test pins	73
8	How	to use th	e kevpad	74
	81	Diagno	istic Summary screens	74
	8.2	Keypad	functions	75
q	Abour	t the Me	nu Svstem	76
	0.1	Config	uring the drive	70
	9.1 0.2	Coning	vour changes	70
	9.2	9 2 1	How to save parameters	79
		922	Abandoning unwanted changes	
	9.3	Restori	ing narameters to default conditions	79
	9.4	400)BL	OCK DISCONNECT	79
	9.5	The me	enu tree structure	80
10	Tech	nical sp	ecifications	91
	10.1	Genera	al information	91
	10.2	Produc	t rating labels	93
	10.3	Electri	cal ratings	93
		10.3.1	Frame 1 - PL/X 5-50	93
		10.3.2	Frame 2 - PL/X 65-145	93
		10.3.3	Frame 3 - PL/X 185-265	94
		10.3.4	Frame 4 - PL/X 275-440	94
		10.3.5	Frame 5 - PL/X 520-980	
	10.4	Short-o	circuit ratings	95
	10.5	Fuses		96
		10.5.1	Semiconductor fuse ratings	
		10.5.2	500 V. Main and auxiliary ruses	7 و
		10.5.5	600/690 V [·] main and auxiliary fuses	99
		10.5.5	600/690 V: DC fuses	
		10.5.6	Square body fuses for frames 4 and 5	
		10.5	5.6.1 Size 33 - 690 Vac - 74.5 mm x 74.5 mm x 50.6 mm - M12	101
		10.5	5.6.2 Size 73 - 1300 Vac - 74.5 mm x 74.5 mm x 74 mm - M12	101
		10.5	5.6.3 Mounting square body semiconductor fuses	102
		10.5	5.6.4 Parelleling semiconductor fuses - frame 5	102
	10.6	Line re	actors	105
		10.6.2	Frames 1-3 - PL/X 5-265	
	10 7	10.6.1	ridilles 4-5 - YL/X Z/S-Y8U	
	10.7	30 7 1	Efforts of supply loss or dips	106
		10.7.1	L1/2/3 AC supply loss of dips	100 107
		10.7.2	Changing control or power cards	107
		.0.7.5		

	10.8	Cooling 1		
		10.8.1 Internal fan		
	10.9	Installa	ation guide for EMC	110
		10.9.1	EN61800-3 operating environments	110
		10.9	1.1.1 Guidelines when using a filter	110
		10.9.2	Earthing and screening guidelines	111
	10.10	Approv	als UL, cUL, CE	113
		10.10.1	EMC Compliance statement for PL/X	113
		10.1	0.1.1 CE Emissions	113
		10.1	0.1.2 CE Immunity	113
		10.10.2	UL, cUL	113
11	The	HANGE		11/
	1110			11 4 444
	11.1	11 1 1		114
		11.1.1		110
		11.1.Z		117
		11.1.5		117
		11.1.4		11/
		11.1.5		110
		11.1.0		110
		11.1./		119
		11.1.0		120
		11.1.9		123
		11.1.10		123
		11.1.11		124
		11.1.1Z		124
		11.1.15	10)RATED ARM VOLTS	125
		11.1.14	19)EL1/2/3 KATED AC	125
	44.2			120
	11.2	CHANG	E PARAMETERS/CALIBRATION/ENCODER SCALING	127
		11.2.1		127
		11.2.2	1)ENCODER LINES	129
		11.2.3		129
	44.2	11.2.4	ISJENCODER SIGN	130
	11.3	11 2 1		131
		11.5.1		133
		11.5.2		122
		11.5.5		124
		11.J.4 11 D E		124
		11.5.5		134
		11.5.0		125
		11 2 8	28/DEVEDSE MINI STELD	136
		11 2 0	20/REVERSE WITH SELED	120
		11 2 10		127
		11.2.10	21\DAMD DDECET \/AITE	וכו 127
		11 2 12	2) DAMDS DOCTIE %	127
		11 2 12		120
		11 3 14		120
		11 2 15		120
		11.2.12		120

11.4	CHANG	E PARAMETERS / JOG CRAWL SLACK	139
	11.4.1	37)JOG SPEED 1	141
	11.4.2	38)JOG SPEED 2	141
	11.4.3	39)SLACK SPEED 1	141
	11.4.4	40)SLACK SPEED 2	141
	11.4.5	41)CRAWL SPEED	142
	11.4.6	42)JOG MODE SELECT	142
	11.4.7	43)JOG/SLACK RAMP	143
11.5	CHANG	E PARAMETERS / MOTORISED POT RAMP	144
	11.5.1	45)MP OP MONITOR	145
	11.5.2	46)MP UP TIME	145
	11.5.3	47)MP DOWN TIME	145
	11.5.4	48)MP UP COMMAND	146
	11.5.5	49)MP DOWN COMMAND	146
	11.5.6	50)MP MAX CLAMP	146
	11.5.7	51)MP MIN CLAMP	147
	11.5.8	52)MP PRESET	147
	11.5.9	53)MP PRESET VALUE	147
	11.5.10	54)MP MEMORY BOOT-UP	148
11.6	CHANG	E PARAMETERS / STOP MODE RAMP	149
	11.6.1	Precise stopping	152
	11.6.2	56)STOP RAMP TIME	153
	11.6.3	57)STOP TIME LIMIT	153
	11.6.4	58)LIVE DELAY MODE	154
	11.6.5	59)DROP-OUT SPEED	154
	11.6.6	60)DROP-OUT DELAY	155
11.7	CHANG	E PARAMETERS / SPEED REF SUMMER	156
	11.7.1	62)INT SPEED REF 1	158
	11.7.2	63)SPEED REF 2	158
	11.7.3	64)SPEED REF 3 MON	158
	11.7.4	65)RAMPED SPD REF 4	159
	11.7.5	66)SPD/CUR REF3 SIGN	159
	11.7.6	67)SPD/CUR REF3 RATIO	159
11.8	CHANG	E PARAMETERS / SPEED CONTROL	160
	11.8.1	69)MAX POS SPEED REF	162
	11.8.2	70)MAX NEG SPEED REF	162
	11.8.3	71)SPEED PROP GAIN	162
	11.8.4	72)SPEED INT I.C.	163
	11.8.5	/3)SPEED INT RESET	163
11.9	CHANG	E PARAMETERS / SPEED CONTROL / SPEED PI ADAPTION	164
	11.9.1	Using small speed inputs	164
	11.9.2		105
	11.9.3	רכוכזאע אעדו או אנאיז איז אעדו או איז	105
	11.9.4		105
	11.9.5	7 JLU DREINT INT L.C	100
	11.9.0		100
44 40	11.9./		100
11.10	11 10 1		160
	11.10.1	OIJUR LLAWF SUALEK	160
	11.10.2	OOJUUALI CLAIVIF EINDL	109

	11.10.3	89)UPPER CUR CLAMP	170
	11.10.4	90)LOWER CUR CLAMP	170
	11.10.5	91)EXTRA CUR REF	170
	11.10.6	92)AUTOTUNE ENABLE	171
	11.10.7	93)CUR PROP GAIN	172
	11.10.8	94)CUR INT GAIN	172
	11.10.9	95)CUR DISCONTINUITY	173
	11.1	0.9.1 Setting the current loop control terms manually	173
	11.10.10	96)4-QUADRANT MODE	174
	11.10.11	97)SPD BYPASS CUR EN	174
	11.10.12	98)ARM FIR.FRNT STOP	174
11.11	CHANGE	PARAMETERS / CURRENT CONTROL / CURRENT OVERLOAD	175
	11.11.1	82)O/LOAD % TARGET	176
	11.1	1.1.1 Achieving overloads >150%	177
	11.11.2	83)O/LOAD RAMP TIME	178
11.12	CHANGE	PARAMETERS / CURRENT CONTROL / I DYNAMIC PROFILE	179
	11.12.1	84)I PROFILE ENABLE	180
	11.12.2	85)SPD BRPNT AT HI I	180
	11.12.3	86)SPD BRPNT AT LO I	180
	11.12.4	87)CUR LIMIT AT LO I	181
11.13	CHANG	E PARAMETERS / FIELD CONTROL	182
	11.13.1	99)FIELD ENABLE	185
	11.13.2	100)FIELD VOLTS OP %	185
	11.13.3	101)FIELD PROP GAIN	186
	11.13.4	102)FIELD INT GAIN	186
	11.13.5	111)STANDBY FLD ENBL	186
	11.13.6	112)STANDBY FLD CUR	187
	11.13.7	113)FLD QUENCH DELAY	187
	11.13.8	114)FIELD REFERENCE	187
11.14	CHANGE	PARAMETERS / FIELD CONTROL/FLD WEAKENING MENU	188
	11.14.1	103)FLD WEAK ENABLE	189
	11.14.2	104)FLD WK PROP GAIN	189
	11.14.3	105)FLD WK INT TC ms	189
	11.14.4	106)FLD WK DRV TC ms	190
	11.14.5	107)FLD WK FB DRV ms	190
	11.14.6	108)FLD WK FBK INT ms	190
	11.14.7	109)SPILLOVER AVF %	191
	11.14.8	110)MIN FIELD CURRENT	191
11.15	CHANG	E PARAMETERS / ZERO INTERLOCKS	192
	11.15.1	115)STANDSTILL ENBL	194
	11.15.2	116)ZERO REF START	194
	11.15.3	117)ZERO INTLK SPD %	194
	11.15.4	118)ZERO INTLK CUR %	195
	11.15.5	119)AT ZERO REF FLAG	195
	11.15.6	120)AT ZERO SPD FLAG	195
	11.15.7	121)AT STANDSTILL	196
	11.1	5.7.1 Low speed performance	196
11.16	CHANGE	PARAMETERS / ZERO INTERLOCKS / SPINDLE ORIENTATE	197
	11.16.1	Spindle orientate operation	198
	11.16.2	122)ZERO SPEED LOCK	201

	11.16.3	240)MARKER ENABLE	201
	11.1	6.3.1 Marker specification	201
	11.16.4	241)MARKER OFFSET	202
	11.16.5	242)POSITION REF	204
	11.16.6	243)MARKER FREQ MON	204
	11.16.7	244)IN POSITION FLAG	204
12 The	DIAGNO	STICS menu	205
12.1	DIAGN	OSTICS	205
	12.1.1	169)EL1/2 RMS MON	205
	12.1.2	170)DC KILOWATTS MON	205
12.2	DIAGN	OSTICS / SPEED LOOP MONITOR	206
	12.2.1	123)TOTAL SPD REF MN	206
	12.2.2	124)SPEED DEMAND MON	206
	12.2.3	125)SPEED ERROR MON	207
	12.2.4	126)ARM VOLTS MON	207
	12.2.5	127)ARM VOLTS % MON	207
	12.2.6	128)BACK EMF % MON	208
	12.2.7	129)TACHO VOLTS MON	208
	12.2.8	130)MOTOR RPM MON	208
	12.2.9	132)ENCODER RPM MON	209
	12.2.10	131)SPEED FBK MON	209
12.3	DIAGN	OSTICS / ARM I LOOP MONITOR	210
	12.3.1	133)ARM CUR DEM MON	210
	12.3.2	134)ARM CUR % MON	
	12.3.3	135)ARM CUR AMPS MON	
	12.3.4	136)UPPER CUR LIM MN	
	12.3.5	137)LOWER CUR LIM MN	
	12.3.0	138)ACTUAL UPPER LIM	
	12.3./	139)ACTUAL LUWER LIM	Z ا Z
	12.3.0		ZIZ
12.4	12.3.9		212
12.4	12 / 1		213
	12.4.1	143)FIELD DEMAND MON 144)ETELD CUP % MON	212
	12.4.2		
	12.4.5		21J 21/
	12.4.4		215
12 5	DIAGN		216
12.5	12 5 1	150)(JIP2 (T2) MON to 157)(JIP9 (T9) MON	216
	12.5.1	159)AOP1 (T10) MON to 161)AOP3 (T12) MON	217
12.6	DIAGN	OSTICS / DIGITAL IO MONITOR	218
	12.6.1	162)UIP 23456789	
	12.6.2	163)DIP 12341234 DIO	
	12.6.3	164)DOP 123TRISC CIP	
	12.6.4	165)+ARM BRIDGE FLAG	
	12.6.5	166)DRIVE START FLAG	
	12.6.6	167)DRIVE RUN FLAG	220
	12.6.7	168)RUNNING MODE MON	220
12.7	DIAGN	OSTICS / BLOCK OP MONITOR	221
12.8	DIAGN	OSTICS / FIELDBUS	222

13 The	MOTOR	DRIVE ALARMS menu	223
13.1	MOTOR	R DRIVE ALARMS	223
	13.1.1	171)SPD TRIP ENABLE	225
	13.1.2	172)SPEED TRIP TOL	227
	13.1.3	173)FLD LOSS TRIP EN	227
	13.1.4	174)DOP SCCT TRIP EN	228
	13.1.5	175)MISSING PULSE EN	228
	13.1.6	176)REF EXCH TRIP EN	229
	13.1.7	177)OVERSPEED DELAY	229
	13.1.8	181)ACTIVE TRIP MON	229
	13.1.9	182)STORED TRIP MON	230
	13.1.10	183)EXT TRIP RESET	231
13.2	MOTOR	R DRIVE ALARMS / STALL TRIP MENU	232
	13.2.1	178)STALL TRIP ENBL	232
	13.2.2	179)STALL CUR LEVEL	233
	13.2.3	180)STALL DELAY TIME	233
13.3	MOTOR	R DRIVE ALARMS / DRIVE TRIP MESSAGE	234
14 The	SERIAL L	INKS menu	240
15 The			241
15 1		VEINCTIONS	241
15.1	15 1 1		241
	15.1.1		241
	15.1.2	SOFTWARE VERSION	242
15 2		V FUNCTIONS / PASSWORD CONTROL	243
13.2	15 2 1		243
	15.2.2	ALTER PASSWORD	244
16 The			2/15
16 1			245
10.1			240
	16.1.2	401)SUMMER TOP MON	2/10
	16.1.2	402)SUMMED1 SIGN1	2/10
	16.1.3	403/SUMMED1 DATIO1	2/10
	16.1.4	404)SOMMERT RATIO?	2/19
	16.1.5		2/19
	16.1.7	400)SUMMERT DIVIDER2	2/19
	16.1.8	408)SUMMERT INPUT	250
	16.1.9	409)SUMMERT INPUT2	250
	16.1.10	410)SUMMERT INPUT3	
	16.1.11	411)SUMMERI DEADBAND	
	16 1 12	412)SUMMERI OP INVRT	251
	16.1.13	413)SUMMERI CLAMP	
16.2	APPLIC	ATION BLOCKS / PID 1. 2	252
	16.2.1	429)PID1 OP MONITOR	
	16.2.2	430)PID1 INPUT1	254
	16.2.3	431)PID1 RATIO1	254
	16.2.4	432)PID1 DIVIDER1	254
	16.2.5	433)PID1 INPUT2	255

	16.2.6	434)PID1 RATIO2	255
	16.2.7	435)PID1 DIVIDER2	255
	16.2.8	436)PID1 PROP GAIN	256
	16.2.9	437)PID1 INTEGRAL TC	256
	16.2.10	438)PID1 DERIV TC	256
	16.2.11	439)PID1 FILTER TC	257
	16.2.12	440)PID1 INT PRESET	257
	16.2.13	441)PID1 PRESET VAL	257
	16.2.14	442)PID1 RESET	258
	16.2.15	443)PID1 POS CLAMP	258
	16.2.16	444)PID1 NEG CLAMP	258
	16.2.17	445)PID1 OUTPUT TRIM	259
	16.2.18	446)PID1 PROFL MODE	259
	16.2.19	447)PID1 MIN PROP GN	260
	16.2.20	448)PID1 X-AXIS MIN	260
	16.2.21	PID1 X-AXIS GET FROM	260
	16.2.22	449)PID1 PROFILED GN	261
	16.2.23	450)PID1 CLAMP FLAG	261
	16.2.24	451)PID1 ERROR MON	261
16.3	APPLIC	ATION BLOCKS/ PARAMETER PROFILER	262
	16.3.1	475)PROFILE Y OP MON	265
	16.3.2	476)PROFILER MODE	265
	16.3.3	477)PROFLR Y AT Xmin	265
	16.3.4	478)PROFLR Y AT Xmax	266
	16.3.5	479)PROFILER Xmin	266
	16.3.6	480)PROFILER Xmax	266
	16.3.7	481)PROFLR X RECTIFY	267
	16.3.8	PRFL X-AXIS GET FROM	267
16.4	APPLIC	ATION BLOCKS / REEL DIAMETER CALC	268
	16.4.1	483)DIAMETER OP MON	271
	16.4.2	484)DIA WEB SPEED IP	271
	16.4.3	485)DIA REEL SPD IP	271
	16.4.4	486)DIAMETER MIN	272
	16.4.5	487)DIA MIN SPEED	272
	16.4.6	488)DIAMETER HOLD	272
	16.4.7	489)DIA FILTER TC	273
	16.4.8	490)DIAMETER PRESET	273
	16.4.9	491)DIA PRESET VALUE	273
	16.4.10	492)DIA WEB BRK THR.	274
	16.4.11	493)DIA MEM BOOT-UP	274
16.5	APPLIC	ATION BLOCKS / TAPER TENSION CALC	275
	16.5.1	Linear taper equation	276
	16.5.2	Hyperbolic taper equation	276
	16.5	5.2.1 Taper graphs showing tension versus diameter	276
	16.5.3	494)TOTAL TENSION MN	277
	16.5.4	495)TENSION REF	277
	16.5.5	496) I APER S I KENG I H	277
	16.5.6	497)HYPERBULIC IAPER	2/8
	16.5./	498) I ENSION I KIM IP	2/8
	16.5.8	499JIAPEKED LENS.MUN	278

16.6.1 500)TORQUE DEMAND MN 16.6.2 501)TORQUE TRIM IP 16.6.3 502)STICTION COMP 16.6.4 503)STIC.WEB SPD THR 16.6.5 504)STATIC FRICTION 16.6.6 505)DYNAMIC FRICTION 16.6.7 506)FRICTION SIGN 16.6.8 507)FIXED INERTIA 16.6.10 509)MATERIAL WIDTH 16.6.11 510)ACCEL LINE SPEED 16.6.12 511)ACCEL SCALER 16.6.14 513)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	282 283 283 284 284 285 285 285 287 287 288 288 288
16.6.2 501)TORQUE TRIM IP	283 283 284 284 284 285 285 285 287 287 288 288 288
16.6.3 502)STICTION COMP 16.6.4 503)STIC.WEB SPD THR 16.6.5 504)STATIC FRICTION 16.6.6 505)DYNAMIC FRICTION 16.6.7 506)FRICTION SIGN 16.6.8 507)FIXED INERTIA 16.6.9 508)VARIABLE INERTIA 16.6.10 509)MATERIAL WIDTH 16.6.11 510)ACCEL LINE SPEED 16.6.12 511)ACCEL SCALER 16.6.13 512)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	283 283 284 284 285 285 285 286 287 287 288 288 288
16.6.4 503)STIC.WEB SPD THR 16.6.5 504)STATIC FRICTION 16.6.6 505)DYNAMIC FRICTION 16.6.7 506)FRICTION SIGN 16.6.8 507)FIXED INERTIA 16.6.9 508)VARIABLE INERTIA 16.6.10 509)MATERIAL WIDTH 16.6.11 510)ACCEL LINE SPEED 16.6.12 511)ACCEL SCALER 16.6.13 512)ACCEL INPUT/MON 16.6.14 513)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	283 284 284 285 285 285 286 287 287 288 288 288
16.6.5 504)STATIC FRICTION	284 284 285 285 286 287 287 288 288 288
16.6.6 505)DYNAMIC FRICTION 16.6.7 506)FRICTION SIGN 16.6.8 507)FIXED INERTIA 16.6.9 508)VARIABLE INERTIA 16.6.10 509)MATERIAL WIDTH 16.6.11 510)ACCEL LINE SPEED 16.6.12 511)ACCEL SCALER 16.6.13 512)ACCEL INPUT/MON 16.6.14 513)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	284 285 285 286 287 287 288 288 288 288
16.6.7 506)FRICTION SIGN	285 285 286 287 287 287 288 288 288
16.6.8 507)FIXED INERTIA 16.6.9 508)VARIABLE INERTIA 16.6.10 509)MATERIAL WIDTH 16.6.11 510)ACCEL LINE SPEED 16.6.12 511)ACCEL SCALER 16.6.13 512)ACCEL INPUT/MON 16.6.14 513)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	285 286 287 287 288 288 288 288
16.6.9 508)VARIABLE INERTIA 16.6.10 509)MATERIAL WIDTH 16.6.11 510)ACCEL LINE SPEED 16.6.12 511)ACCEL SCALER 16.6.13 512)ACCEL INPUT/MON 16.6.14 513)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	286 287 287 288 288 288 288
16.6.10 509)MATERIAL WIDTH 16.6.11 510)ACCEL LINE SPEED 16.6.12 511)ACCEL SCALER 16.6.13 512)ACCEL INPUT/MON 16.6.14 513)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	287 287 288 288 288
16.6.11 510)ACCEL LINE SPEED 16.6.12 511)ACCEL SCALER 16.6.13 512)ACCEL INPUT/MON 16.6.14 513)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	287 288 288 288
16.6.12 511)ACCEL SCALER 16.6.13 512)ACCEL INPUT/MON 16.6.14 513)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	288 288 288
16.6.13 512)ACCEL INPUT/MON 16.6.14 513)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	288 288
16.6.14 513)ACCEL FILTER TC 16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	288
16.6.15 514)TENSION DEM IP 16.6.16 515)TENSION SCALER	
16.6.16 515)TENSION SCALER	289
	289
16.6.17 516)TORQUE MEM SEL	289
16.6.18 517)TORQUE MEM INPUT	290
16.6.19 518)TENSION ENABLE	290
16.6.20 519)OVER/UNDERWIND.	291
16.6.21 520)INERTIA COMP MON	291
16.7 Centre winding block arrangement	292
16.8 APPLICATIONS BLOCK / PRESET SPEED	293
16.8.1 523)PRESET SPEED MON	295
16.8.2 524)PRESET SELT(LSB)	295
16.8.3 525)PRESET SELECT 2	295
10.0.4 520)PRESET SELS(WSD)	295
10.0.5 527 JPR.VALUE FOR 000	290
16.0.0 520)PR.VALUE FOR 001	290
10.0.7 529)FR.VALUE FOR 010	206
16.9.0 521)PR.VALUE FOR 011	290
16 8 10 522) DD VALUE FOR 100	207
16 8 11 522)PR.VALUE FOR 101	207
16 8 12 53/)PR VALUE FOR 111	297
	200
16.9.1 544)MULTIFUN1 MODE	300
16 9 1 1 Sample and hold function	300
16.9.2 545)MULTIFUNI OP SEL	301
16.9.3 GET EROM	
16.9.4 AUX GET FROM	
16.9.5 GOTO	
16.10 APPLICATION BLOCKS / LATCH	303
16.10.1 560)LATCH DATA MON	303
16.10.2 561)LATCH DATA IP	305
16.10.3 562)LATCH CLOCK IP	305
16.10.4 563)LATCH SET IP	305
16.10.5 564)LATCH RESET IP	306
	306

16.11	APPLIC	ATION BLOCKS / FILTER 1, 2	307
	16.11.1	568)FILTER1 OP MON	308
	16.11.2	569)FILTER1 TC	308
	16.11.3	GET FROM	308
	16.11.4	Fixed low pass filter	309
16.12	APPLIC	ATION BLOCKS / BATCH COUNTER	310
	16.12.1	578)COUNTER COUNT	311
	16.12.2	579)COUNTER CLOCK	311
	16.12.3	580)COUNTER RESET	311
	16.12.4	581)COUNTER TARGET	312
	16.12.5	582)COUNTER >=TARGET	312
16.13	APPLIC	ATION BLOCKS / INTERVAL TIMER	313
	16.13.1	583)TMR ELAPSED TIME	313
	16.13.2	584)TIMER RESET	314
	16.13.3	585)TIMER INTERVAL	314
	16.13.4	586)TMR EXPIRED FLAG	314
16.14	APPLIC	ATION BLOCKS / COMPARATOR 1 to 4	315
	16.14.1	588)COMP1 INPUT 1	316
	16.14.2	589)COMP1 INPUT 2	316
	16.14.3	590)COMP1 WINDOW SEL	316
	16.14.4	591)COMP1 HYSTERISIS	317
	16.14.5	GOTO	317
16.15	APPLIC	ATION BLOCKS / C/O SWITCH 1 TO 4	318
	16.15.1	Sample and hold function	318
	16.15.2	604)C/O SW1 CONTROL	319
	16.15.3	605)C/O SW1 HI VALUE	319
	16.15.4	606)C/O SW1 LO VALUE	319
	16.15.5	C/O SW1 LO VALUE	320
16.16	APPLIC	ATION BLOCKS / 16-BIT DEMULTIPLEX	321
17 The	CONFIG	URATION menu	323
17.1	How to	configure blocks	323
.,	17.1.1	CONFLICT HELP MENU	323
17.2	CONFIG	GURATION	324
	17.2.1	CONFIGURATION / FNABLE GOTO GETEROM	325
17 3	CONFIG	SURATION / INIVERSAL INPLITS	326
17.3	CONFIG	GURATION / UNIVERSAL INPUTS / UIP2 to 9	327
17.4	17 4 1	320) JIP2 IP RANGE	329
	1742	321)LIP2 IP OFFSET	330
	17.4	2.1 4-20 mA loop input SETUP	330
	1743	322)IJIP2 CAL RATIO	331
	1744	323) JIP2 MAX CLAMP	331
	17.4.5	324)UIP2 MIN CLAMP	331
	17.4.6	UIP ANALOG GOTO	332
	17.4.7	UIP DIGITAL OP1 GOTO	333
	17.4.8	UIP DIGITAL OP2 GOTO	333
	17.4.9	325)UIP2 HI VAL OP1	334
	17.4.10	326)UIP2 LO VAL OP1	334
	17.4.11	327)UIP2 HI VAL OP2	334
	17.4.12	328)UIP2 LO VAL OP2	335
	17.4.13	329)UIP2 THRESHOLD	335

17.5	CONFI	GURATION / ANALOG OUTPUTS	336
	17.5.1	250)Iarm OP RECTIFY	
	17.5.2	260)SCOPE OP SELECT	
17.6	ANALO	G OUTPUTS / AOP1/2/3 SETUP	338
	17.6.1	Default connections for AOP1/2/3	
	17.6.2	251)AOP1 DIVIDER	
	17.6.3	252)AOP1 OFFSET	
	17.6.4	253)AOP1 RECTIFY EN	
	17.6.5	GET FROM	
17.7	CONFI	GURATION / DIGITAL INPUTS	340
	17.7.1	Using DIP inputs for encoder signals	340
17.8	CONFI	GURATION / DIGITAL INPUTS / DIP1 (T14) SETUP	341
	17.8.1	310)DIP1 IP HI VALUE	
	17.8.2	311)DIP1 IP LO VALUE	
47.0	17.8.3		
17.9	CONFIG	URATION / DIGITAL INPUTS / RUN IP SETUP	343
	17.9.1	318)RUN IP HI VALUE	
	17.9.2	319)RUN IP LU VALUE	344
4740	17.9.5		
17.10	CONFI	GURATION / DIGITAL IN/OUTPUTS	345
17.11	17111		345
	17.11.1		2/7
	17.11.2	272)DIOT RECTIFT EN	3/7
	17.11.3	273)DIOT THRESHOLD	3/18
	17.11.4	GET FROM	348
	17.11.6	GOTO	349
	17.11.7	275)DIO1 IP HI VALUE	
	17.11.8	276)DIO1 IP LO VALUE	
	17.11.9	Hidden PINs 685/686/687/688	
17.12	CONFI	GURATION / DIGITAL OUTPUTS	351
17.13	CONFI	GURATION / DIGITAL OUTPUTS / DOP1/2/3	351
	17.13.1	261)DOP1 RECTIFY EN	
	17.13.2	262)DOP1 THRESHOLD	
	17.13.3	263)DOP1 INVERT MODE	353
	17.13.4	GET FROM	353
	17.1	3.4.1 Hidden PINs 682/683/684	353
	17.1	3.4.2 Default connections for DOP1/2/3	353
17.14	CONFI	GURATION / STAGING POSTS	354
	17.14.1	Connecting PINs with different units	354
	17.1	4.1.1 Connecting linear values with different units	
	17.1	4.1.2 Connecting logic values with different messages	
	17.1	4.1.3 Connecting to multi-state logic parameters	
	17.14.2	296)DIGITAL POST 1	
4745	17.14.3		
17.15			358
	1715.1		
	1715.2		250
	1715.3		250
	17.15.4		

17.16	CONFIGURATION / JUMPER CONNECTIONS	360	
	17.16.1 GET FROM	360	
	17.16.2 GOTO	360	
17.17	CONFIGURATION / BLOCK OP CONFIG	361	
	17.17.1 Other GOTOs	361	
	17.17.2 GOTO	361	
17.18	CONFIGURATION / FIELDBUS CONFIG	362	
17.19	CONFIGURATION / DRIVE PERSONALITY	363	
	17.19.1 677)RECIPE PAGE	363	
	17.19.2 678)MAX CUR RESPONSE	365	
	17.19.3 680)Iarm BURDEN OHMS	365	
	17.19.3.1 Frames 1 - 3 (PL/X5 - PL/X265)	366	
	17.19.3.2 Frame 4 (PL/X275 - PL/X440)	367	
	17.19.3.3 Frame 5 (PL/X520 - PL/X980)	368	
17.20	CONFIGURATION/DRIVE PERSONALITY/PASSIVE MOTOR SET	371	
17.21	CONFIGURATION / CONFLICT HELP MENU	373	
	17.21.1 NUMBER OF CONFLICTS	373	
	17.21.2 MULTIPLE GOTO ON PIN	373	
18 PIN 1	tables	374	
18.1	CHANGE PARAMETERS: 1 – 122	374	
18.2	DIAGNOSTICS: 123 – 170	378	
18.3	MOTOR DRIVE ALARMS: 171 – 183	380	
18.4	SERIAL LINKS: 184 – 244	381	
18.5	CONFIGURATION: 250 - 400	382	
18.6	APPLICATION: 401 - 680	388	
18 7	DRIVE PERSONALITY: 677 - 680	395	
10.7	Hiddon nine: 691 720	206	
10.0	niuuen pins. 001 - 720	290	
19 Bloc	9 Block diagram (default) 398		

Figures:

Figure 1	The basic arrangement of the PL/X control loop
Figure 2	Power wiring diagram15
Figure 3	Control wiring diagram
Figure 4	DC tachogenerator
Figure 5	Encoder
Figure 6	Frame 1 - top connections
Figure 7	Frame 1 - bottom connections 17
Figure 8	Frame 2 - top connections
Figure 9	Frame 2 - bottom connections 18
Figure 10	Frame 3 - top connections 19
Figure 11	Frame 3 - bottom connections 19
Figure 12	Frame 4 - top and bottom connections 20
Figure 13	Frame 5 - top and bottom connections 21
Figure 14	PL/X family - cover dimensions
Figure 15	Frame 1 PL/X 5-50 dimensions 36
Figure 16	Frame 2 PL/X 65-145 dimensions 37
Figure 17	Frame 3 PL/X 185-265 dimensions 38
Figure 18	Frame 3 PL/X 185-265 dimensions and airflow 39
Figure 19	Frame 4 PL/X 275-440 dimensions 41
Figure 20	Frame 5 PL/X 520-980 dimensions 43
Figure 21	Venting air flow
Figure 22	Venting kit (optional) 47
Figure 23	Basic application wiring diagram: speed or torque control
Figure 24	Main contactor isolating AC stack supply52
Figure 25	Main contactor isolating AC stack and auxiliary supplies
Figure 26	Main contactor isolating DC armature
Figure 27	Using normally-open contacts for simple STOP/START/JOG
Figure 28	Using push buttons for simple STOP/START (coast to stop)
Figure 29	Using push buttons for STOP/START (with ramp to stop, jog, slack take-up). 60
Figure 30	Output configuration (DOP1 to DOP3, DIO1 to DIO4)
Figure 31	A 4-20 mA signal flowing through an external burden resistor
Figure 32	Signal test pins
Figure 33	Configuring the PL/X78
Figure 34	Wiring diagram for AC supply level to L1/2/3 different to EL1/2/3 (e.g. low voltage field)
Figure 35	Earthing diagram for a typical installation 112
Figure 36	Rating plate information 114
Figure 37	CALIBRATION - block diagram 115
Figure 38	RUN MODE RAMPS, including JOG CRAWL SLACK - block diagram

Figures:

Figure 39	JOG CRAWL SLACK, including RUN MODE RAMPS - block diagram	140
Figure 40	MOTORISED POT RAMP - block diagram	144
Figure 41	STOP MODE RAMP - block diagram	149
Figure 42	Contactor Control - block diagram	150
Figure 43	Speed profile when stopping	151
Figure 44	Contactor drop-out	152
Figure 45	SPEED REF SUMMER - block diagram	157
Figure 46	SPEED CONTROL - block diagram	161
Figure 47	Graph showing adaption profile for default values	164
Figure 48	CURRENT CONTROL: block diagram	168
Figure 49	O/LOAD % TARGET set to 105%	176
Figure 50	How to achieve overloads greater than 150%	177
Figure 51	I DYNAMIC PROFILE	179
Figure 52	FIELD CONTROL - block diagram	183
Figure 53	ZERO INTERLOCKS - block diagram	193
Figure 54	SPINDLE ORIENTATE - block diagram	199
Figure 55	MARKER ENABLE	202
Figure 56	MOTOR DRIVE ALARMS - block diagram	224
Figure 57	SUMMER1, SUMMER 2 - block diagrams	247
Figure 58	PID 1, 2 - block diagram	253
Figure 59	PARAMETER PROFILER - block diagram	262
Figure 60	PARAMETER PROFILE - Profile for Y increasing with X	263
Figure 61	PARAMETER PROFILE - Profile for Y decreasing with X	263
Figure 62	PARAMETER PROFILE - Examples of general profiles	264
Figure 63	REEL DIAMETER CALC - block diagram	270
Figure 64	TAPER TENSION CALC - block diagram	275
Figure 65	Taper graphs showing tension versus diameter	276
Figure 66	TORQUE COMPENSATOR - block diagram	280
Figure 67	TORQUE COMPENSATOR INERTIA COMPENSATOR - block diagram	281
Figure 68	TORQUE COMPENSATOR FRICTION COMPENSATOR - block diagram	282
Figure 69	Centre winding block arrangement	292
Figure 70	PRESET SPEED - block diagram	293
Figure 71	MULTI-FUNCTION - block diagram	299
Figure 72	LATCH - block diagram	304
Figure 73	FILTER - block diagram	307
Figure 74	LOW PASS FILTER - block diagram	309
Figure 75	BATCH COUNTER - block diagram and sample times	310
Figure 76	INTERVAL TIMER - block diagram	313
Figure 77	COMPARATOR 1 - block diagram	315

Figures:

Figure 78	C/O SWITCH 1 - block diagram
Figure 79	16-bit Demultiplex - block diagram 322
Figure 80	UIP2 (Universal Inputs) - block diagram
Figure 81	AOP4 (T29) Current Feedback - block diagram
Figure 82	AOP1 (T10) Speed Feedback - block diagram
Figure 83	AOP2 (T11) Total Speed Reference - block diagram
Figure 84	AOP3 (T12) Total Current Demand - block diagram
Figure 85	Digital inputs, showing DIP1 (T14) - block diagram
Figure 86	RUN DIP (T31) - block diagram
Figure 87	DIO1 Digital IO - block diagram
Figure 88	DOP1 (T22) Zero Speed - block diagram 351
Figure 89	Recipe Page - functional diagram
Figure 90	Burden and jumper selections for Frames 1 - 3 (PL/X5 - PL/X265) 366
Figure 91	Burden and jumper selections for Frame 4 (PL/X275 - PL/X440) 367
Figure 92	Burden and jumper selections for Frame 5 (PL/X520 - PL/X980) 368
Figure 93	Burden resistor values for frames 1 - 3 with jumper selection 370
Figure 94	Burden resistor values for frames 4 & 5 with solderable links selection 370

1 Introduction

Sprint Electric PL/X Digital DC Drives are for use in industrial (non-domestic) applications to control the speed of dc motors.

The PL/X series comprises five frame sizes. Each frame size offers several different current ratings in two quadrant and four quadrant configurations.

This manual is for use by the installer, operator, and programmer of the PL/X Digital DC Drive. It assumes that you have relevant experience in these disciplines.

Use this manual to commission the PL/X using the keypad and display:

1. Follow the steps outlined in the Commissioning section on Page 12.

This entails:

- a. Mechanically installing the PL/X.
- b. Electrically installing the PL/X.
- c. Conducting vital pre-start checks.
- d. Completing the QuickStart Guide.
- e. Performing a PARAMETER SAVE to conclude the commissioning process.
- 2. At this point, you might:
 - Add a password (0000, by default): Page 243.
 - Create Drive Personalities: Page 363.
 - Further program and control the PL/X, or multiple PL/X, using a configuration tool.
 - Configure the special Application Blocks supplied with the PL/X: Page 245.

Frame 1 - PL/X5-50

Frame 2 - PL/X65-145

Frame 3 - PL/X185-265

Frame 4 - PL/X275-440

This manual is written for PL/X software version 6.42.

Product overview 1.1

Features and benefits 1.1.1

Applications advice and training is available from Sprint Electric.

General:

- The PL/X unit is an open-chassis component for use in a suitable enclosure.
- Calibration requires no setting of switches or soldering of resistors.
- The drive prevents armature current settings in excess of the model rating.
- It uses closed-loop control of armature current and voltage to give precise control of motor torque and speed. The unit also controls the motor excitation field.
- Use the keypad and display on the front panel to commission and program the drive, or do this remotely using an ethernet-based distributed control system (DCS) hardware and software.
- · Connect and configure a range of built-in software blocks. These contain userprogrammable control parameters that allow control of both simple and complex motion control applications.
- Comprehensive fault monitoring and serial communications allow off-site programming and remote diagnostics.
- We recommend always beginning with a QuickStart (Armature Voltage Feedback):
 - The speed feedback is always present and in the correct polarity.
 - The motor, load or both can be seen to be rotating correctly and at approximately the correct speed.
 - If a tachogenerator or encoder is present, you can check for correct polarity and output levels before including it in the feedback loop.
 - · You can check and set other parameters, such as ramp rates and stopping modes, before progressing to a final, accurate Calibration.
- For systems using torque control:
 - We recommend the QuickStart, setting up in basic speed mode for armature voltage feedback to establish correct speed loop functioning and calibration and then switching to torque control.
- . For systems using field weakening:
 - We recommend the QuickStart, setting up in basic speed mode for armature voltage feedback first to verify normal operation up to base speed. Then introduce field weakening only after careful calibration and switching to either tacho or encoder feedback.
- The system may need a pre-test before shipping, and there is no tachogenerator available:
 - Only the OuickStart Calibration parameters require setting when following the QuickStart procedure.
 - It is easy to change to a set of default parameters specifically for use with very small motors suitable for testing.

1.2 PL/X principle of operation

Figure 1 The basic arrangement of the PL/X control loop

Inner Current Loop

The 3-phase thyristor bridge is a phase-controlled rectifier that delivers power to the motor armature. Sensing of the armature current (proportional to motor torque) provides feedback to the inner current loop. The current error amplifier compares and detects any difference between this and the current demand, forcing the current feedback to be equal to the current demand (i.e. the current error is zero) in the steadystate. Various limits are imposed to current demand depending on application requirements.

Outer Speed Loop

The outer speed loop works similarly but uses different parameters. In the example above, the demand is the user's speed reference, and the speed feedback is from a shaft-mounted tachogenerator. Any difference between the two is detected and used to modify the demand for the inner current loop. The change in current demand changes the motor torque accordingly and, through the action of the inner current loop and the 3-phase bridge, this reduces the speed error to zero.

The PL/X control loop performs this process continuously, giving high levels of speed accuracy and dynamic performance.

W in fo se	Page 12	
Th ap	ne PL/X has a built-in default configuration suitable for most oplications that you can modify if required.	Page 50
•	To modify a parameter in the Configuration menu, you must first set ENABLE GOTO, GETFROM to ENABLE.	Page 77
•	Any changes you make to a parameter become effective immediately but you must perform a PARAMETER SAVE before removing the PL/X control supply to prevent losing your changes.	Page 79
•	To restore the default configuration, hold down all four keys on the drive's keypad while applying the control supply. The Calibration values relevant to the motor are unaffected by this process.	Page 79
•	Up to three Drive Personalities can be stored.	Page 363
•	Special Application Blocks, including signal processors, PIDs, etc., are available. Usually, these are disabled unless activated by the User. They are not necessary for motor control purposes but can be used to construct more complex systems.	Page 245
In ea	ternal connections between function blocks and parameters are sily changed to suit specialist applications.	Page 77
•	All parameters have a unique identification number called a PIN (Parameter Identification Number).	Page 374
•	Most parameters are adjustable while the drive is running to assist commissioning. Where not possible, the PL/X requests a stop condition by displaying the STOP DRIVE TO ADJUST message.	Page 31
•	There is a facility for an improved small-signal current response for high-performance applications.	Page 365
Th in	ne PL/X provides robust and configurable I/O to interface with struments and PLCs.	Page 68
A ou	A Diagnostics menu allows monitoring of all relevant inputs and Page 205 outputs in engineering units and percentages.	
	here are also default % Diagnostic Summary screens.	Page /4
W	Ith the drive commissioned safely, you can now:	
•	Begin implementing more complex Applications blocks.	Page 245
	You can enter a password to prevent unauthorised re-calibration	Page 243

1.4 Testing using a small motor

Select from two different motor parameter sets for the PL/X: MOTOR 1 (default) and MOTOR 2. Refer to "11.1.15 20)MOTOR 1,2 SELECT" on page 126.

MOTOR 2 contains a set of parameters with values to suit very small motors for use during a system test:

- Selecting MOTOR 2 saves time, as there is no need to alter and reset the PASSIVE MOTOR SET parameters listed below. These six parameters constitute the difference between the MOTOR 1 and MOTOR 2 parameter sets.
- Note that the dynamic performance of the small test motor will not be as good as that of a correctly calibrated and Autotuned motor, but it should be sufficient for most purposes.

Reselecting MOTOR 1 will re-install the MOTOR 1 parameter settings as the active set.

Parameter	Range	Defaults		PIN	Details
		MOTOR 1	MOTOR 2		
CALIBRATION / 4)RATED FIELD AMPS	0.1 – 100% A	25% Amp	1 Amp	4	Page 117
SPEED CONTROL / 71)SPEED PROP GAIN	0 – 200.00	15.00	5.00	71	Page 162
CURRENT CONTROL / 81)CUR CLAMP SCALER	0 - 150.00%	150.00%	10.00%	81	Page 169
CURRENT CONTROL / 93)CUR PROP GAIN	0 – 200.00	30.00	5.00	93	Page 172
CURRENT CONTROL / 94)CUR INT GAIN	0 - 200.00	3.00	1.00	94	Page 172
CURRENT CONTROL / 95)CUR DISCONTINUITY	0 – 200.00%	13.00%	0.00%	95	Page 173

NOTE: Using a very small, unloaded motor on high-rated PL/X units may trigger a missing pulse alarm because the armature current demand exceeds the missing pulse detection threshold. Set parameter "13.1.5 175)MISSING PULSE EN" on page 228 "to DISABLED to prevent the alarm.

Refer also to "17.19.3.3.1 Jumper selections (50% / 100% rating)" on page 369 for details of the burden jumper, where opting to use a high-value burden resistor provides an alternative method of testing the PL/X using small motors.

1.5 **Configuration tool**

The PL/X series of DC Drives operate with several ethernet-based distributed control systems (DCS) hardware and software. These software tools may create a diagram of the control system.

Implement your system economically using off-the-shelf ethernet hubs and connection cables to connect multiple drives into a control system using virtual connections.

Please contact Sprint-Electric for details of using DCS.

Archiving PL/X Recipes 1.6

After establishing a working set of parameters and configuration connections, we recommend archiving your changes. DCS tools are available for creating an archive.

Please contact Sprint-Electric for details of using DCS.

What to do in the event of a problem 1.7

Is the PL/X being commissioned for the first time? If so, have you been able to tick the boxes in "3.4 Essential pre-start checks" on page 22?

A simple clarification of a technical issue 1.7.1

A telephone call, fax or email can often resolve problems. If telephoning, please have this manual to hand at the time of calling. When forwarding information about your enquiry. please include the following information:

- Product serial number.
- Software version number (if possible) refer to "15.1.3 SOFTWARE VERSION" on page 242.

1.7.2 A complete system failure

Contact the equipment supplier for assistance. The experienced engineer helping you understands the importance of delivering a solution, considering that you may be working in challenging conditions. Please provide the following:

- Product serial number.
- Software version number (if possible) refer to "15.1.3 SOFTWARE VERSION" on page . 242.
- Wiring diagram of the PL/X installation with details of external signals connected to the PL/X.
- Machine schematic with details of the intended function of the motor being driven by the PL/X.
- All possible motor details.
- A precise description of the fault condition, including any alarm messages issued by the . PL/X.
- Operating conditions before and at the point of the failure (if possible).
- The precise parameter changes made to the default values, or provide a Recipe file.

WARNING! PERSONAL INJURY HAZARD

Read and understand the General Risks given at the front of this manual when performing measurements and investigating failures. This applies to electrical and mechanical systems.

1.7.3 Finding the software version of the unit

Refer to "15.1.3 SOFTWARE VERSION" on page 242.

1.7.4 How to reset the unit

Refer to "17.19.1 677)RECIPE PAGE" on page 363:

- NORMAL RESET
- 2-KEY RESET
- 3-KEY RESET
- 4-KEY ROM RESET

1.7.4.1 4-KEY RESET (to factory defaults)

Performing a 4-KEY RESET restores the factory block connections and parameter defaults, with the exceptions listed below. You must carry out a **PARAMETER SAVE** to retain the newly installed default settings.

- The PASSWORD is reset to 0000. Refer to "15.2 DISPLAY FUNCTIONS / PASSWORD CONTROL" on page 243.
- The 4-KEY RESET does NOT affect the prevailing MOTOR 1 and MOTOR 2 Calibration parameters, which are:
 - parameters PIN 2 to PIN 20
 - 100>FIELD VOLTS OP %
 - 680) Larm BURDEN OHMS

• The MOTOR 1, 2 SELECT parameter is NOT overwritten by the 4-KEY RESET.

For more information:

Refer to "1.4 Testing using a small motor" on page 5.

Refer to "9.3 Restoring parameters to default conditions" on page 79.

Refer to "17.19.1 677)RECIPE PAGE" on page 363.

2 Commissioning

The suggested Commissioning strategy starts in the safest possible mode of operation and progressively exercises each element of the system to achieve full functionality.

IMPORTANT: Incorrect control of the main contactor is the most common failure encountered, and we highly recommend that you read this chapter very carefully.

The following table outlines the sequential steps for commissioning the drive. Create your application by selecting a Power Wiring method and a Control Wiring method from various interchangeable options. The default Drive Personality, which includes programming and defaults, is suitable for most applications. After the initial setup, you can customise and refine each application, saving up to three different Recipe pages.

NOTE: The simple installation provided by "3 QuickStart Guide" on page 12 (and also the separate PL/X QuickStart Guide booklet) combines "METHOD 1 - Power Wiring" and "METHOD 1 - Control Wiring". It is described by the Basic Application drawing "Figure 14 Basic application wiring diagram: speed or torque control" on page 59.

1	Main contactor operation	Read and understand about the main contactor operation.	Page 9
2	Mechanical installation	Install on a wall or in an enclosure.	Page 35
		All PL/X drives have venting requirements but note that larger drives have internal fans requiring a separate power source. These drives may also benefit from using the optional venting kit.	
3	Study the QuickStart's basic application wiring diagrams.	Note how you can interchange the various wiring methods.	Page 50
4	Electrical installation	Select from three Power Wiring methods - each method has its advantages and disadvantages. Wire your selected Power Wiring method.	Page 52
		Select from three Control Wiring methods. Wire your selected Control wiriring method.	Page 58
5	Display and MMI	Read and understand how to	Page 76
		operate the drive using the display and programming keys.	Page 74
6	QuickStart Guide	Complete the QuickStart Guide to perform essential pre-start checks, power-up the drive, enter CALIBRATION parameters and follow the steps to starting the drive.	Page 12
7	Further commissioning	Modify the QuickStart's basic installation.	Page 1

2.1 Understanding main contactor operation

The purpose of the main contactor is to provide electro-mechanical isolation of the motor armature from the power supply.

The essential elements of controlling the contactor are as follows:

- 1. It must be possible to release the contactor without relying on electronics.
- 2. The contactor must not break current. To obey this rule, the following applies:
 - a. The PL/X must not attempt to deliver armature current until after the contactor closes.
 - b. The armature current must be at zero before the contactor opens.
- 3. The contactor control circuit must be compatible with all likely application requirements.

The $\ensuremath{\text{PL/X}}$ can control all of the above requirements in the use of the main contactor.

In the event of an emergency, it must be possible for the supply to be removed electromechanically (without the aid of semiconductor electronics).

This requirement is usually mandated by safety codes.

Under normal operation, the PL/X controls the contactor according to the programmed requirements of the user - refer to Page 149.

The CSTOP (coast stop) terminal T34 goes directly to the 24 V coil of the internal contactor control relay (the relay contacts are on T45 and T46).

- If 24 V is supplied to CSTOP (T34) then the relay (and hence the main contactor) is ready to be controlled by the PL/X.
- If 24 V is **not** supplied to CSTOP (T34), the relay is de-energised, thereby releasing the main contactor, or it is not energised.

A capacitor across the relay coil causes it to have a defined drop-out time of approximately 100 ms, ensuring that the PL/X has time to commutate the armature current to zero before the contacts open.

WARNING! EQUIPMENT DAMAGE HAZARD

It may be necessary for installations to have over-riding external independent systems for de-energising the supply side or dc contactor. In this case, we recommend that the CSTOP terminal is opened 100 ms prior to de-energising the supply side or dc side contactor. Failure to do so may result in damage to the PL/X.

2.1.1 Main contactor control Q & A

Question	Why is it so important to prevent the contactor from
	1) Breaking current
	or 2) Making current?
Answer	1) Breaking current
	The motor armature is an inductive load, helping to smooth the current by storing electrical energy during a charging period and releasing it during a discharging period. However, if the circuit breaks suddenly, stored energy has nowhere to go and causes a rapid rise in voltage as the inductor (motor armature) tries to find a discharge path. This rapid transient can cause thyristors in the armature bridge to become conductive. If this happens to a pair of thyristors, an effective short-circuit can form across the armature.
	A second effect then occurs. Abruptly shorting a rotating motor causes mechanical energy stored in the rotation of the motor and load to generate into the short-circuit. It could be a destructive amount of energy. Thyristors can become permanently shorted and, the next time the contactor closes, the supply fuses will likely blow.
Solution	Always allow the PL/X to control the contactor. It can hold in the contactor while safely quenching the armature current. Use CSTOP (T34) for the emergency opening of the contactor via the PL/X. This electro-mechanical terminal ensures that the PL/X quenches the armature current in time. If Safety Codes prevent the PL/X from being used in the emergency stop sequence, ensure that CSTOP opens 100 ms before the main contactor opens.
Answer	2) Making current
	The motor cannot rotate if the PL/X attempts to start making current without the main contactor being closed, causing the PL/X to phase further forward in an attempt to produce the desired speed. In this situation, closing the contactor presents a stationary motor armature onto a fully phased-forward stack, straight onto the supply, producing destructive current. All this occurs in a few current cycles, far too fast for the speed loss alarms to operate.
Solution	Insert an auxiliary normally open contact on the main contactor in series with the RUN input on T31. Alternatively, use the contactor wiring method shown in "7.3.2 METHOD 2 - Power wiring" on page 53.
Question	Many systems appear not to suffer from failures due to opening the contactor incorrectly, so why is it so important?
Answer	If the armature current is discontinuous, which is very common, there is much less stored inductive energy, and the current also goes to zero with every current cycle. This makes a destructive situation much less likely to occur.
	The high-risk situations are regenerative applications and continuous current modes. However, these cases do not always result in a destructive sequence.
Question	Even if the contactor operates according to recommendations, how is protection provided if the contactor coil supply is lost?
----------	--
Answer	It is a complicated problem to solve using electronics. The only reliable insurance is to insert a DC semiconductor fuse in the armature circuit. This fuse should open before the thyristor junction fails.
Question	What if the grid system completely fails?
Answer	It is not as bad as losing the contactor coil supply. Most installations naturally have other loads that provide a safe discharge path before the contactor opens.
Question	What if the grid system fails for a few cycles? (brown-outs)
Answer	The PL/X can ride through these kinds of supply dips. As soon as it loses synchronisation, the armature current quenches. The PL/X monitors the armature voltage so that, when the supply returns, it picks up into the rotating load at the correct speed.
Question	What other sorts of problems occur?
Answer	Most problems occur when users are retrofitting the PL/X into an existing system. Sometimes the system has previously controlled the contactor via a PLC or Drive healthy relay. It may not interface correctly with the PL/X, and situations may occur to drop out the contactor too quickly or bring it in too late.
	The common problem is that the contactor is controlled correctly during normal running but incorrectly during jogging or an emergency stop.
	Another instance is where the commissioning engineer uses a local operator station in a correctly designed system to get each PL/X going, but the system has an in-built control problem.
Summary:	 Use the PL/X to control the main contactor for STOP, START, jogging and emergency stop. All sequencing occurs automatically.

Fit semiconductor fuses in the AC supply and armature circuits.

The cost of a fuse is marginal compared to the cost of repairing a damaged drive and suffering machine downtime and engineer call-out costs.

NOTE: If your main contactor has a closing time delay of greater than 75 ms, take essential steps to delay the release of armature current until the main contact has closed:

- 1. Wire an auxiliary normally-open contact on the main contactor in series with the RUN input on T31 - refer to "7.3.3 METHOD 3 - Power wiring" on page 54.
- Alternatively use the contactor wiring 2. method shown in "7.3.2 METHOD 2 -Power wiring" on page 53.

Contactor coils usually have a high inductance.

When the contactor is de-energised, it can produce high energy arcing on the internal PL/X control relay that may degrade the life of the relay and/or produce excessive EMC emissions

Ensure that the contactor coil has a snubber (resistor/capacitor combination) fitted.

3 QuickStart Guide

3.1 Introduction

Follow the steps outlined in this guide to install and initiate the PL/X as a **basic** speed controller, employing ARMATURE VOLTAGE feedback mode for optimal safety.

The PL/X drive displays user-friendly menus and parameter names. Use the key sequences we provide at each step to navigate and edit parameter values with no knowledge of the menu system required.

When finished:

• Refer to "7 Electrical installation" on page 49 for further information, including alternative power wiring and control wiring methods.

NOTE: The simple installation provided by this QuickStart Guide combines "METHOD 1 - Power Wiring" and "METHOD 1 - Control Wiring". It is described by "Figure 23 Basic application wiring diagram: speed or torque control" on page 50.

3.1.1 Important safety notes

Pay particular attention to all the safety warnings in this guide.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

Electric shock risk! Electrical devices constitute a safety hazard.

Do not attempt to commission the PL/X unless you:

- are qualified and have the knowledge and skills to use it safely.
 - thoroughly understand the operation of the machine having the PL/X installed.
 - have read and understood this document, and are familiar with electrical wiring and safety standards.
 - Only use qualified personnel to design, construct, operate and maintain your systems.

Ensure personnel who use or maintain the equipment know of all hazards involved in your equipment and processes.

If you have any doubts about the safety of your system or process, do not proceed without first consulting an expert.

Entering key sequences

Use the PL/X keypad to enter the key sequences in the order given. This will navigate the menus in the fewest key presses.

Several sequences reset at the Diagnostic Summary screens, located at the top of the menu system. This reset is used as a helpful reference point in case you lose your way.

L	Press the LEFT key once	R	Press the RIGHT key once
U	Press the UP key once	D	Press the DOWN key once
Nx	Press the indicated key N times. N specifies the number of times to press the key. For example, 8xD means press the DOWN key 8 times.		
U/D	Use the UP and DOWN keys to increase/decrease values		

With the Diagnostic Summary screens displayed, an example key sequence is:

R-R-U-R-8xD-R-R-U/D (navigates to PIN 10, U/D changes the parameter value)

NOTE: Hold a key down to advance rapidly to a distant selection or value.

About Diagnostic Summary screens

To quickly return to the Diagnostic Summary screens from any point in the menu, hold down the LEFT key, releasing the key to remove the ENTRY MENU reminder screen.

At the top of the menu system are two alternating Diagnostic Summary screens. To access the ENTRY MENU from this point, press the RIGHT key.

ENTRY MENU reminder screen

This screen reminds you to press the **RIGHT** key to view the ENTRY MENU. It displays when you press the **LEFT, UP** or **DOWN** key while viewing the Diagnostic Summary screens.

How to save parameters

Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key. Enter the sequence **R-U-R-U**.

Кеу	Action	
R		
U	Display the PARAMETER SAVE screen	PARAMETER SAVE 2
R		of her to contribe
U	Press the UP key to continue and save	

Record your CALIBRATION parameter data 3.2

Measure the supply voltage and record it below. Also, record the parameter values from the motor and feedback device nameplates for entry into the Calibration menu later.

Description	Example values	Record your value	Units	Property "S"
2)RATED ARM AMPS Rated armature current	35		Adc	S
3)CURRENT LIMIT(%) Current limit	your setting:		%	-
4)RATED FIELD AMPS Field current @ base speed	1.35		Adc	S
5)BASE RATED RPM Base speed	1750		rpm	S
6) DESIRED MAX RPM Maximum speed	2300		rpm	-
9)SPEED FBK TYPE Speed feedback type		ARMATURE VOLTAGE		S
18)RATED ARM VOLTS Rated armature volts	500		Vdc	S
19)EL1/2/3 RATED AC Supply voltage	480		Vac	S
Field volts (refer to PIN 4)	used to calculate field current if not known		Vdc	
ENCODER / TACHO infor	mation			
8)MAX TACHO VOLTS DC tachogenerator	60		V/1000 rpm	S
11)ENCODER LINES Encoder lines	1024		PPR	S
Encoder volts	5 - 24		Vdc	
Field weakening inform	ation			
Field current @ maximum speed			Adc	

Property "S" parameters 3.1.2

Refer to "18 PIN tables" on page 374 to identify all parameters with property "S".

- The PL/X keys will not change the values of property "S" parameters while the motor is running.
- A change made to the 20>MOTOR 1, 2 SELECT parameter while the motor is running will ٠ NOT become active until after a STOP sequence.

This functionality provides an extra level of safety during motor running while allowing dynamic alteration of important parameters.

Installation 3.3

Connect the drive 3.3.1

WARNING! PERSONAL INJURY AND/OR EOUIPMENT DÁMAGE HAZARD

Before beginning to connect the drive, ensure that all power is OFF.

Make sure that you route power and control wiring in separate conduit/cable trays. Wiring must meet all applicable national and local electrical regulations.

Make sure that the voltages on the EL1/EL2/EL3 terminals are in-phase with the voltages on L1/L2/L3.

For reliable operation, the PL/X must control the supply side or dc side contactor through its CON1 and CON2 terminals terminals (T45 and T46).

3.3.1.1 Wiring diagrams

the motor, short together terminals 36 and 30.

Figure 2 Power wiring diagram

Note: Jumper T6 to T27

Figure 3 Control wiring diagram

3.3.1.2 **Optional feedback devices**

3.3.2 Frame 1 - PL/X5-50

Figure 6 Frame 1 - top connections

3.3.3 Frame 2 - PL/X65-145

Field (F+ and F-) and EL1, EL2, EL3 supply terminals

3.3.4 Frame 3 - PL/X185-265

3.3.5 Frame 4 - PL/X275-440

3.3.6 Frame 5 - PL/X520-980

3.4 **Essential pre-start checks**

Make the essential mechanical and electrical pre-start checks before applying power to the motor. You need to ensure that you can mark each item on the checklists as completed.

Failing to comply with these requirements may cause incorrect functioning or damage to the drive and/or installation - this will invalidate any Warranty.

CHECK LIST: Mechanical 3.4.1

Tick each each item when complete.

1	Check that the motor, and load if fitted, are free to rotate without causing damage or injury even in the event of incorrect rotation direction or loss of control.	
2	Blow clean, dry air over the commutator to clear it of extraneous matter. Check the brushes are correctly seated and that the brush tensions are correct.	
3	Check the motor vent blower is free to rotate. Remember to re-check the airflow when the blower is operating.	
4	Check the emergency stopping and safety procedure, including local and remote actuators, before applying power to the motor.	
5	Check the installation is clean and free of debris, swarf, clippings, tools etc. Check the enclosure has adequate ventilation with clean, dry, cool, filtered air. Check the PL/X heatsink fans are operating and that the flow of air over the heatsink is unobstructed when the motor is running. Refer to "10 Technical specifications" on page 91 for cooling airflow data.	

3.4.2 CHECK LIST: Electrical

Tick each each item when complete.

1	Check that all external fuses are of the correct rating and type. The total clearing I ² t ratings of the main fuse and auxiliary fuse must be smaller in value than the rating specified in the rating tables. Refer to "10 Technical specifications" on page 91 - semiconductor fuse ratings.	
2	Check the motor armature resistance, expected to be a few Ohms over a 360° rotation dependent upon the size of the motor, i.e. not a short-circuit. Check that the field resistance in Ohms = (field data plate volts) / (field data plate current).	
	Check inside the motor terminal box to verify the correct wiring.	
3	Check the 3-phase auxiliary supply phasing on EL1/2/3 equates to the phasing of the main stack supply on L1/2/3, and the 1ph control supply on T52/53 is correct.	
4	Check that the drive and 3-phase supply current and voltage ratings are compatible with the motor and load requirements (both armature and field, current and voltage).	
5	Check that the cables and termination are rated to carry the rated current, with no more than a 25°C temperature rise. Check all terminations are tight to the correct torque. Refer to "7.4.3	
	Terminal tightening torques" on page 56.	
6	Check that the main contactor operates by using the CON1/2 contact on terminals T45 and T46.	
7	Check the wiring for short-circuit faults: AC power to ground, to signal and to control; DC power to ground, to signal and to control; signal to control and to ground. Disconnect the drive for wiring tests using a Megger (control terminals are a plug-in type).	
8	Check that the engineering standards used will comply with any local, national, or international codes in force. Safety requirements take priority.	
9	If the load regenerates or if regenerative braking is in use, then we highly recommend using a DC rated armature fuse with the correct I ² t rating in series with the motor armature. Refer to "10.5 Fuses" on page 96.	
10	Check that a protective chassis earth connection, in accordance with the relevant codes, exists at the terminal bar provided at the bottom edge of the PL/X.	
11	Check that a protective clean earth connection exists at the control 0 V on T13 to ensure that the installation complies with the protective Class 1 requirements.	

 $\mathbf{\nabla}$

3.5 Final checks BEFORE applying power

- Recheck all wiring, especially the drive's chassis ground.
- Use a multimeter to check the L1, L2, L3, F+, F-, A+, and A- terminals for short-circuits to ground. All readings should be greater than 1 M Ω .

If any resistances are lower than 1 M Ω , correct them before you apply power.

CSTOP/RUN/START control terminal functions 3.5.1

WARNING! PERSONAL INJURY HAZARD

The Safety Codes do not accept electronic control as a sole means of inhibition for the PL/X. Do not rely on any drive function to prevent the motor from operating when personnel are undertaking maintenance or when machine guards are open. Always isolate the power source before working on the PL/X or the motor or load.

CSTOP **Coast Stop**

For correct sequencing, this must close before all other control signals. When opened, the drive immediately stops generating rotor current, and the contactor drops out. The motor will coast to a stop.

Run - NOT SAFETY RATED RUN

Electronic inhibit for all operation modes. May be connected to terminal T35 with a jumper in most applications, or preferably to an auxiliary normally-open contact on the main contactor. When closed, the drive may generate current. When opened, the drive generates no rotor current.

START Start

When closed, the drive's contactor operates, and the motor runs at the potentiometer's speed setting. When opened, the drive ramps to zero, and the contactor opens after a delay (default: 2 seconds).

Apply control power to the PL/X 3.6

Is the PL/X being commissioned for the first time? If so, you must be able to complete "3.4 Essential pre-start checks" on page 22?

Now apply 110 - 240 Vac control power to terminal T53 (Line) and T52 (Neutral). After a short self-test, the PL/X will display the Diagnostic Summary screens at the top of the menu system.

3.7 **QuickStart steps**

Always commission the drive using ARMATURE VOLTAGE feedback, even if the motor has a dc tacho or encoder. It allows verification of the feedback polarity, ensuring that the motor does not run out of control.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

Follow the QuickStart steps below as written and in the correct numerical order.

Calibrate the drive to the motor

Enter your values from Page 14.

NOTE: U/D means to use the UP and DOWN keys freely to change the values.

1	Hold down the LEFT key to display the Diagnostic Summary screens. Release the key.			
2	Rated Armature Current	R-R-U-R-R-U/D	2)RATED ARM AMPS 35.0 AMPS	
3	Rated Field Current	L-D-D-R-U/D	4)RATED FIELD AMPS 2.00 AMPS	
4	Rated Base Speed	L-D-R-U/D	5)BASE RATED RPM 1750 RPM	
5	Required Maximum Speed	L-D-R-U/D	6)DESIRED MAX RPM 1750 RPM	
	NOTE: The base speed is the sate to extend the speed range. ("3.	ame as maximum sp .8.2 Field weakening	peed unless using field weakening g" on page 30).	
6	Rated Armature Volts	L-9xD-R-U/D	18)RATED ARM VOLTS 500.0 VOLTS	
7	Supply Voltage	L-D-R-U/D	19)EL1/2/3 RATED AC 460.0 VOLTS	
Check the following have not been modified from their factory default settings. If necessary, correct the selections to those shown below.				

8	Motor 1/2 Select	L-D-R-U/D	20)MOTOR 1,2 SELECT MOTOR 1
9	Speed Feedback Type	L-8xU-R-U/D	9)SPEED FBK TYPE ARMATURE VOLTS

10 Save the parameters. Refer to Page 13.

Check the control terminals

Complete these checks to ensure that the drive contactor is sequenced correctly before the 3-phase power is applied.

NOTE: The value under the letters TRISC in the display indicates the actual Control input terminal status.

11 Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key.

12 Leave the CSTOP contact R-D-R-4xD-R-D-D-R open (zero displays under the C) and close the other control contacts.

Check that the digit under the appropriate letter changes as you cycle the contact.

NOTE: Generally **1** = **ON** and **0** = **OFF** (however, for the thermistor T, **0** = **0k** while **1** = Motor Overtemp).

When T, R and S control inputs are operating correctly, leave R and S OFF and check the C control input for correct operation.

Apply main 3-phase power to the PL/X

13 Apply main 3-phase power.

Autotune the PL/X

26

Before running the motor, you **must** perform the Autotune as follows. This procedure automatically tunes the drive's current loop by adjusting parameters 93, 94, and 95.

14	Set RUN and CSTOP high but leave START low. The control inputs should match TRISC enposite	Continuing from " Check the control terminals" on	164)DC)P 123 101	STRJS0 01001	CIP
	match rkjse opposite.	page 20 above.				
15	Hold down the LEFT key to	display the Diagnostic S	Summary s	screens.	Release	e the key.
16	Enable the autotune mode.	R-R-6xD-R-7xD-R-U	92)aut	otune Enae	e enae Bled	BLE
17	Hold down the LEFT key to	display the Diagnostic S	Summary s	screens.	Release	e the key.
18	Start the drive by energising the Start input (T33).	RJSC can also be seen on the Diagnostic Summary screens	SPD% Ø	Iarm 0	Ifld 0	RJSC 1011
40	The sector day along a start	- 	l		-1-> >A/I-	

19 The contactor closes, and the drive Autotunes (it takes 10 - 60 seconds). When complete, the drive's contactor opens. Turn off the Start input (T33).

164)DOP 123TRJSC CIP

164)DOP 123TRJSC CIP

10100000

- Autotune is a static test.
- There is no need to disconnect the motor from the load.
- The motor field is automatically disabled.
- If the motor back emf is detected to be above a certain level implying excessive rotation. Autotune aborts.
- Completing the Autotune routine forces the main contactor to drop-out, and AUTOTUNE ENABLE to reset to DISABLED.

Should Autotune fail, refer to "11.10.6 92)AUTOTUNE ENABLE" on page 171, or contact your Supplier.

Motor rotational checks

Disconnect the motor from the gearbox and machine before commencing these checks.

- 20 Hold down the LEFT key to display the Diagnostic Summary screens. Release the key.
- 21 Reduce the current limit.

As an added precaution, R-R-U-R-D-R restrict the available current to the drive by reducing the Current Limit to provide just enough current to turn the motor (usually 5 to 10%).

22 Check the speed potentiometer operation.

Monitor the Ramp L-L-D-R-5xD-R input to check the operation of the speed potentiometer. Leave the reference at zero when operating correctly.

23 Save the parameters. Refer to Page 13.

Reconnect the motor to the gearbox and machine.

24 Start the drive.

Energise the START input (T33) to start the drive. Check the field voltage at the F+ and F- terminals. When the motor is cold, you will measure less than the rated field voltage.

- **25** Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key.
- **26** Confirm the field current matches the nameplate data.

145)FLD CUR AMPS MON 1.35 AMPS

3)CURRENT LIMIT(%)

26)RAMP INPUT

5.00 %

75.14 %

- 27 Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key.
- 28 Increase the potentiometer setting until the motor turns slowly.

Check motor rotation. If L-L-D-R-5xD-R it is turning backwards, stop, turn off ALL power to the drive and swap the armature leads (A+ and A-). Recheck after changes.

26)RAMP INPUT 75.14 %

- **29** Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key.
- **30** Slowly bring the motor to full speed.

Check the voltage on the R-D-R-R-3xD-R A+ and A- terminals as you slowly bring the motor up to full speed.

126) ARM VOLTS MON 500.0 VOLTS

31 Save the parameters. Refer to Page 13.

Increase the current limit to rated value

- Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key. 31
- **32** Return the current limit to 150%.

R-R-U-R-D-R-U

3)CURRENT LIMIT(%) 150.00 %

33 Save the parameters. Refer to Page 13.

The PL/X Digital DC Drive is now successfully commissioned.

3.8 **Options**

3.8.1 Feedback

3.8.1.1 **Feedback calibration**

Enter your values from Page 14 for DC Tachogenerator or Encoder:

1 Start the drive.

> Energise the START input (T33) to start the drive. Check the field voltage at the F+ and F- terminals. When the motor is cold, you will measure less than the rated field voltage.

- Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key. 2
- 3 **DC Tachogenerator**

For a dc tachogenerator, calibrate the drive to the expected dc voltage for base speed.

Base Tacho Voltage = (Base Speed/1000) x Tacho Volts per 1000 rpm.

The tacho voltage must **R-R-U-R-6xD-R-U/D** not exceed 200 Vdc.

8)MAX TACHO VOLTS 87.50 VOLTS

4 Encoder/PPR

If the encoder is a quadrature type, enable 10)QUADRATURE ENABLE as below. For a pulse and direction type encoder, the parameter must be DISABLED.

R-R-U-R-8xD-R-R-U/D

10)QUADRATURE ENABLE ENABLED

NOTE: On PL models only, it is also possible to operate with a pulse-only encoder (no direction signal).

In both cases (4), set L-D-R-U/D the number of encoder lines (PPR: pulses per revolution).

11) ENCODER LINES 1024

5 Save the parameters. Refer to Page 13.

3.8.1.2 **Preparing for Tacho/Encoder use**

- 6 Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key.
- 7 Check to ensure the speed reference is positive (+):

		R-D-R-R-R	123)TOTAL SPD REF MN 26.50 %
8	Check the sign of the feed	back:	
	DC tachogenerator:	6xD	129)TACHO VOLTS MON 23.19 AMPS
		If positive (+), continue and power-off the drive leads on T25 and T26 a	to step 9 below. If negative (-), stop e. Exchange the tachogenerator nd recheck.
	Encoder:	2xD	132>ENCODER RPM MON 464 RPM
		If positive (+), continue and power-off the drive T16 and T17 and reche 13)ENCODER SIGN :	to step 9 below. If negative (-), stop e. Exchange the encoder leads on ck. Alternatively, check and adjust
		3xL-U-R-U-R-8xD-R- 3xD-R-U/D	13>ENCODER SIGN INVERT

Selecting Tacho/Encoder feedback type 3.8.1.3

- Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key. 9
- **10** Stop the drive and select the appropriate feedback type as follows:

DC tachogenerator:	R-R-U-R-7xD-R-U/D	9)SPEED FBK TYPE ANALOG TACHO		
Encoder:	R-R-U-R-7xD-R-U/D	9)SPEED FBK TYPE ENCODER		

- 11 Save the parameters. Refer to Page 13.
- 12 Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key.
- **13** Start the drive and make sure the maximum speed is achievable, and the armature voltage does not exceed the nameplate armature voltage.
- 14 Stop the drive.

3.8.2 **Field weakening**

When using either tacho or encoder feedback, you can enable field weakening for a motor which supports an extended speed range. Refer to "11.14 CHANGE PARAMETERS / FIELD CONTROL/FLD WEAKENING MENU" on page 188.

Self-test messages

4 Self-test messages

A group of self-test messages provide information about problems occurring in the PL/X that are not related to the motion control system. A message displays when a problem occurs and is not saved internally for later access. Take remedial action to cure the problem, which clears the message.

Self Test Message

The PL/X has facilities to allow all the parameter settings to be transferred serially from another source using PARAMETER EXCHANGE. This transfer may be from another drive or computer. The process is called DRIVE RECEIVE. Refer to the PL/X Serial Communications Manual, HG105289EN00 (DRIVE RECEIVE).

This alarm appears at the end of the DRIVE **RECEIVE** parameter transfer process if the transfer corrupts the drive parameters. The most likely cause for this problem is DRIVE RECEIVE of a corrupted parameter file. The contents of the target Recipe page will now show corruption.

It is possible to restore the original Recipe to the PL/X if the PL/X still holds the prevailing parameters and settings before the corruption. To restore the parameters from the PL/X's volatile memory:

- 1. Press the LEFT key. The PL/X now displays the parameters before corruption.
- Go to the PARAMETER SAVE menu and save these 2. parameters to overwrite the corrupt data held in the target Recipe page.

Unfortunately, you cannot use the desired new file (now known to be corrupted).

If the alarm appears at power-up, then the LEFT kev restores factory defaults. Perform a PARAMETER SAVE after checking the following:

Check that the calibration parameters and drive personality Iarm burden value are correct after restoring factory defaults. These may also need re-entering.

Refer to "17.19.1 677) RECIPE PAGE" on page 363 and "17.19.3 680) Iarm BURDEN OHMS" on page 365.

INITIALISING DATA CORRUPTION

Self Test Message	
The ENABLE GOTO,GETFROM configuration selection has been left in the ENABLED state. Set to DISABLED to run the PL/X.	parameter name DISABLE GOTO, GETFROM
This alarm will appear at power-up if the self- calibration of the analog inputs has exceeded their normal tolerance.	INITIALISING SELF CAL TOLERANCE
Press the LEFT key to relax this tolerance by 0.1%. Repeat to enable the PL/X to operate, although possibly at reduced accuracy. It indicates an aged component that has drifted slightly or a pollution problem.	
This alarm will appear at power-up if the self- calibration of the Proportional armature current amplifier has failed. If turning the control supply off and on does not remove the problem, then a hardware failure is suspected.	INITIALISING PRP ARM CUR CAL FAIL
This alarm will appear at power-up if the self- calibration of the Integral armature current amplifier has failed. If turning the control supply off and on does not remove the problem, then a hardware failure is suspected.	INITIALISING INT ARM CUR CAL FAIL
This message will appear when attempting to alter a parameter belonging to the class that you cannot adjust while the motor is running.	parameter name STOP DRIVE TO ADJUST
The message will blink when pressing the UP/DOWN keys, and the parameter remains unaltered. The PL/X must stop for the parameter to be adjusted.	
This message will appear when attempting to alter a parameter before entering the correct password.	parameter name ENTER PASSWORD
The message will blink when pressing the UP/ DOWN keys. Refer to "15.2 DISPLAY FUNCTIONS / PASSWORD CONTROL" on page 243.	
This message will appear when attempting to configure connections without first setting ENABLE GOTO,GETFROM to ENABLED. The message will blink when pressing the UP/DOWN keys.	parameter name ENABLE GOTO, GETFROM

Self Test Message

At the end of a configuration session, the ENABLE GOTO,GETFROM window must be set to DISABLED. This message appears if any PIN has more than one GOTO accidentally connected to it during the session. It will also appear as an alarm message when asking the PL/X to run while there is a GOTO CONFLICT, e.g. if a parameter file containing a GOTO CONFLICT is loaded.

Refer to "17.21 CONFIGURATION / CONFLICT HELP MENU" on page 373.

This message will appear for a variety of reasons:

- Codes 0001 / 2 / 3 indicate a microprocessor system problem. Please consult the supplier.
- The message SUPPLY PHASE LOSS indicates the control supply has dipped. Refer to "10.7 Supply loss shutdown" on page 106.
- The PL/X attempts to make and measure a small test current every time it actions a run condition.
 - Code 0005 can appear if a very small motor runs on a large PL/X with a high inductance 3-phase supply. In this case, it is necessary to re-calibrate the model rating to a lower current. Refer to "17.19.3 680)Iarm BURDEN OHMS" on page 365, and "17.19.3 680)Iarm BURDEN OHMS" on page 365 - 50% / 100% rating select.
 - Code **0005** will appear if the armature is open circuit.
 - Code 0005 will appear if supplies are missing on terminals L1, L2, L3.
 - Code 0005 will appear if not producing thyristor firing pulses.

If **INTERNAL ERROR CODE** appears when running, then:

- 1. The armature current will quench.
- 2. The main contactor and field will deenergise.
- 3. The digital outputs will be disabled.
- 4. The HEALTHY flag (PIN 698) will be set low.

The normal operation may be re-instated by pressing the LEFT key or turning the PL/X control supply off and on again.

GOTO CONFLICT

INTERNAL ERROR CODE 0001

Self Test Message

This message will appear if a PARAMETER SAVE on RECIPE PAGE = 3-KEY RESET or a DRIVE RECEIVE of a page 3 file is attempted, **AND** the Supplier has locked the page. A Page 3 lock may be protecting a Recipe from being overwritten. Please contact your Supplier.

It may also appear if changing some "special" parameters; however, this is unlikely to happen in normal operation.

IMPORTANT: The lock status is also included in and transfers with a page 3 file. Receiving a page 3 file with a locked status will automatically lock any unlocked page 3. Refer to the PL/X Serial Communications Manual, HG105289EN00 (PARAMETER EXCHANGE with a locked RECIPE.

This message will usually appear if the control supply is below 90 Vac and indicates a save problem.

This message will appear when a file SAVED using PARAMETER SAVE, with more recent software, has been loaded onto a PL/X with incompatible older software.

By host computer using parameter exchange:

To correct the problem, press the LEFT key, and the PL/X will return to its factory default values. Unfortunately, any desired parameter changes will need to be re-entered and SAVED. Alternatively, it may be possible to use an ethernet-based distributed control system (DCS) to transfer the file. Refer to "1.5 Configuration tool" on page 5.

By transfer of EEPROM:

In this case, the original file in the EEPROM will still be intact and still work with the original younger version of the software. Refer to the PL/X Serial Communications Manual. HG105289EN00 (Parameter drive / EEPROM transfer between drives).

Refer to the PL/X Serial Communications Manual. HG105289EN00 (Rules of parameter exchange relating to software version).

parameter name AUTHORISATION NEEDED

parameter name MEMORY WRITE ERROR

parameter name MEMORY VERSION ERROR

5 Mechanical installation

5.1 Cover dimensions for the PL/X family

Figure 14 PL/X family - cover dimensions

Model		Width	Depth	
PL 2-quadrant		W	Н	D
PLX 4-quadrant		(mm)	(mm)	(mm)
PL and PLX	5 - 980	216	292	116

NOTE: The PL/X is an open chassis component for use in a suitable enclosure.

5.2 Mechanical installation - Frame 1 PL/X 5-50

Figure 15 Frame 1 PL/X 5-50 dimensions

Model		Width	Hoight	Donth	Eiving	contros	Height	Woight	Force
PL 2-quadr	PL 2-quadrant		neight	Deptil	FIXING	Lentres	at rear	weight	vented
PLX 4-quadrant		W	Н	D	А	В	С		
· ·		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)	
PL and PLX	5-20	216	292	175	174	224	258	5	NO
PL and PLX	30-50	216	292	175	174	224	258	5	YES

Mounting the Frame 1 PL/X 5-50 5.2.1

- Mount the PL/X vertically (as shown) using the four mounting slots: M6 (1/4 inch) screws. All mounting hole dimensions are ±2 mm.
- The rating table specifies the nominal cooling air throughput (use cool, clean, dry, filtered ٠ air).
- Do not block the heatsink fins. Allow at least 50 mm (2 inches) space above and below the . PL/X.

Mechanical installation - Frame 2 PL/X 65-145 5.3

Figure 16 Frame 2 PL/X 65-145 dimensions

Model		Width	Height	Donth	Eiving contros		Height	Woight	Force
PL 2-quadr	. 2-quadrant		(terminals)	Deptil	Fixing	Lentres	at rear	weight	vented
PLX 4-quadrant		W	Н	D	А	В	С		
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)	
PL and PLX	65-145	216	415	218	174	386	410	11	YES

5.3.1 Mounting the Frame 2 PL/X 65-145

- Mount the PL/X vertically (as shown) using the four mounting slots: M8 (5/16 inch) screws. All mounting hole dimensions are ±2 mm.
- Mount the main contactor to avoid the transmission of mechanical operating shock to the PL/X busbars, for example, by ensuring to fit the Line Reactor between the contactor and PL/X.
- ٠ The rating table specifies the nominal cooling air throughput (use cool, clean, dry, filtered air).
- Do not block the heatsink fins. Allow at least 100 mm (4 inches) air clearance above and . below the PL/X.

5.4 Mechanical installation - Frame 3 PL/X 185-265

Figure 17 Frame 3 PL/X 185-265 dimensions

Model		Width	Height (teminals)	Depth	Fixing centres		Height at rear	Weight	Force vented
PLX 4-quad	rant	W	Н	D	А	В	C		
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)	
PL and PLX	185-225	216	504	315	174	386	410	17	YES
PL only	265	216	504	315	174	386	410	17	YES

5.4.1 Mounting the Frame 3 PL/X 185-265

- Mount the PL/X vertically (as shown) using the four mounting slots: M8 (5/16 inch) screws. All mounting hole dimensions are ±2 mm.
- Mount the main contactor to avoid the transmission of mechanical operating shock to the PL/X busbars, for example, by ensuring to fit the Line Reactor between the contactor and PL/X.
- The rating table specifies the nominal cooling air throughput (use cool, clean, dry, filtered air).
- Do not block the heatsink fins. Allow at least 100 mm (4 inches) air clearance above and below the PL/X.
- Note that the connection terminals for the main fan are at the top left-hand corner of the PL/X.

5.4.1.1 Venting using a back panel aperture

Cut out an aperture in the back panel using the template provided. This preferred mounting method allows the maximum volume of cool air to flow over the PL/X's heatsink.

For installations requiring a 50°C internal enclosure ambient, this method is a requirement.

The source of the clean, filtered, cool, dry air required for venting the PL/X must arrive at the bottom of the enclosure and then be able to flow freely, without obstruction, to the back aperture. A powerful integral fan sucks this air into the rear of the heatsink. It is exhausted at the top and bottom of the PL/X. Extract the exhaust air from the enclosure using roof-mounted fans capable of a throughput rate specified in the rating table.

NOTE: When calculating the required air throughput, you must consider the dissipation of all heat-generating components. Refer to the relevant sections in "10 Technical specifications" on page 91 for cooling, main fuses and line reactors.

5.4.1.2 Venting using standoff pillars

This mounting method may be the only practical technique in retrofit installations if cutting an aperture in the back panel is not possible.

To be as effective as the back panel aperture method, provide an air duct with an aperture area of greater than 180 sq cm that can transport air unimpeded to the rear of the PL/X.

The PL/X comes with a mounting kit consisting of four 50 mm standoff pillars (LA102752).

The highest enclosure ambient temperature allowed using this method is 35°C.

There must be no obstructions to the flow of air to the rear of the PL/X. The method has a lower enclosure ambient rating because some exhaust air may recirculate over the heatsink leading to a loss of efficiency. Any steps taken to minimise this are advantageous. (The 35°C rating applies to installations having no complete separation of the incoming air from the cooling air).

5.5 Mechanical installation - Frame 4 PL/X 275-440

Figure 19 Frame 4 PL/X 275-440 dimensions

Model PL 2-quadrant PLX 4-quadrant		Width	Height (terminals)	Depth	Fixing	centres	Height at rear	Weight	Force vented
		W	Н	D	А	В	С		
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)	
PL and PLX	275-400	253	757	349	150	680	700	17	YES

Mechanical installation

5.5.1 Mounting the Frame 4 PL/X 275-440

Refer to "6 Venting for PL/X 275-980" on page 45.

- Mount the drive vertically (as shown) using the four mounting slots: M8 (5/16 inch) screws. All mounting hole dimensions are ±2 mm.
- Mount the main contactor to avoid the transmission of mechanical operating shock ٠ to the PL/X busbars, for example, by ensuring to fit the Line Reactor between the contactor and PL/X.
- The rating table specifies the nominal cooling air throughput (use cool, clean, dry, filtered air).
- Do not block the heatsink fins. Allow at least 200mm (8 inches) air clearance above and below the PL/X.
- Note that the connection terminals for the main fan are at the bottom left-hand corner of the PL/X.

When using a venting kit is impractical : Models PL/X 275/315/360

For these models, it is usually sufficient to ensure that the enclosure, fitted with exhaust fans, can expel air at a rate equal to or greater than the drive's fan, while staying within the capacity of the enclosure inlet filter.

Refer to "10.8 Cooling" on page 109 for airflow ratings.

Ensure that the enclosure fans are positioned in the roof directly above the exhaust outlet of the PL/X.

When using a venting kit is impractical : Models PL/X 400/440

For these models, it is essential to maintain separation between the exhaust air emitted from the top end of the fin section and the rest of the enclosure. This is achieved by constructing a duct to evacuate the enclosure's exhaust air. If an indirect route is necessary, external fans may be required to ensure the required airflow.

Refer to "10.8 Cooling" on page 109 for airflow ratings.

Ensure that pollutants cannot enter the port. If there is a risk of birds or vermin entering. consider using a suitable grill.

5.6 Mechanical installation - Frame 5 PL/X 520-980

Figure 20 Frame 5 PL/X 520-980 dimensions

Model		Width	Height (terminals)	Depth	Fixing	centres	Height at rear	Weight	Force vented
PLX 4-quadra	nt ·	W	Н	D	А	В	С		
PEX 4-quadrant		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)	
PL and PLX	520-980	507	757	349	150	680	700	17	YES

5.6.1 Mounting the Frame 5 PL/X 520-980

Refer to "6 Venting for PL/X 275-980" on page 45.

- Mount vertically (as shown) using the eight mounting slots: M8 (5/16 inch) screws. All mounting hole dimensions are ±2 mm.
- Mount the main contactor to avoid the transmission of mechanical operating shock ٠ to the PL/X busbars, for example, by ensuring to fit the Line Reactor between the contactor and PL/X.
- The rating table specifies the nominal cooling air throughput (use cool, clean, dry, filtered air).
- Do not block the heatsink fins. Allow at least 100mm (4 inches) air clearance above and below the unit.
- Note that the connection terminals for the main fan are at the bottom left-hand corner of the PL/X.

When using a venting kit is impractical : Models PL/X 520/600

For these models, it is usually sufficient to ensure that the enclosure, fitted with exhaust fans, can expel air at a rate equal to or greater than the drive's fan, while staying within the capacity of the enclosure inlet filter.

Refer to "10.8 Cooling" on page 109 for airflow ratings.

Ensure that the enclosure fans are positioned in the roof directly above the exhaust outlet of the PL/X.

When using a venting kit is impractical : Models PL/X 700/800/900/980

For these models, it is essential to maintain separation between the exhaust air emitted from the top end of the fin section and the rest of the enclosure. This is achieved by constructing a duct to evacuate the enclosure's exhaust air. If an indirect route is necessary, external fans may be required to ensure the required airflow.

Refer to "10.8 Cooling" on page 109 for airflow ratings.

Ensure that pollutants cannot enter the port. If there is a risk of birds or vermin entering, consider using a suitable grill.

6 Venting for PL/X 275-980

These Frame 4 and Frame 5 drives have a very efficient cooling system consisting of a powerful integral centrifugal fan mounted at the bottom of the PL/X. It blows air over a high dissipation heatsink to maintain the required operating temperatures under all operating limits. Cool air is drawn in at the top and bottom of the PL/X to pass over the internal heatsink fins to exhaust at the top of the PL/X. This warm air must vent from the drive enclosure.

The optional venting kit prevents the warm exhaust air from mixing with the intake air. Therefore the PL/X will run cooler and is less stressed.

This diagram shows a side view of a PL/X in an enclosure

6.1 Venting summary

- Ensure a clean uninterruptible supply of cool filtered air is available for the PL/X: and the safe, adequate removal of the exhaust air.
- Use the venting kit (optional)/exhaust fans and ducting, or both to keep the hot exhaust • air separate from the cooling input air within the enclosure.
- Ensure the cooling air is available at the top and bottom of the PL/X. .
- Observe good engineering practice and keep all the components within the enclosure as cold as possible, consistent with avoiding condensation.
- For installations subjected to high ambient temperatures, consider using air conditioning to achieve these requirements. The PL/X will survive running at high ambient temperatures but possibly at the expense of its potential life span.

6.1.1 Air supply to enclosure

It is essential to supply the enclosure that houses the PL/X with sufficient cool, clean air to satisfy the throughput requirements of the PL/X and any other devices within the housing. Do not forget that the current-carrying components associated with the PL/X will be dissipating a considerable amount of heat, especially when the system is running at its highest capacity.

6.1.2 **Air filters**

Fit the enclosure with two air filters suitable for the airborne pollutants encountered within its environment: one provides air to the lower input port and the other to the upper. Together, they must have a rated throughput of sufficient capacity for all exhaust fans used in the enclosure. If the PL/X uses a venting kit and another exhaust fan is also operating to cool other components, this auxiliary fan must not starve the PL/X of its air supply. Avoid using this fan if the input filters have sufficient capacity. We recommend the PL/X uses dedicated filters and an enclosure partition to isolate it from the influence of the rest of the enclosure cooling arrangements.

Fit the inlet filters to the enclosure adjacent to the input ports at the lower and upper ends of the PL/X. In this way, the air draws in close where needed. Fitting filters at the top and bottom of the PL/X helps maintain the air path, which might otherwise be restricted when using only one filter in an enclosure whose door is close to the face of the PL/X.

6.1.3 Exhaust air

Provide adequate ventilation in the room containing the enclosure to prevent an increase in ambient temperature by the air exiting the housing. Alternatively, obtain a supply of cooling air from outside, and duct it to the enclosure.
6.2 Venting kit (optional)

Figure 22 Venting kit (optional)

6.2.1 Venting kit for PL/X 275 - 440

This venting kit comprises two steel ducts designed to telescope together, providing an adjustable duct length of between 270 mm to 538 mm. It consists of three main components:

- **The lower duct.** Fit this within the side cheeks, directly above the heatsink exhaust 1. area. Refer to "Figure 19 Frame 4 PL/X 275-440 dimensions" on page 41 for fixing point drawing.
- 2. **The upper duct.** The upper ducting must fit through a tight-fitting rectangular hole in the enclosure roof (hole size 100 mm x 252 mm) to protrude above the enclosure roof by 10-20 mm. Fit the upper duct over the lower duct section and extend to the required height through the hole. Secure the upper ducting to the lower ducting, inserting screws through both sides into the best-fit holes (the adjustment is in steps of approximately 20 mm). Seal any gap between the duct and enclosure roof using tape or flexible filler to ensure that exhaust air and pollutants cannot enter the enclosure.
- 3. **The cowl.** Fit the cowl to the top of the enclosure to prevent pollutants from dropping into the outlet. Drill four M6 holes in the enclosure roof for the four 70 mm mounting pillars, such that the cowl is positioned centrally over the protruding duct (the cowl overhangs the duct by 70 mm on all sides). If there is a danger of birds or vermin entering the exhaust port, we recommend adding a suitable grille around the edge of the cowl.

6.2.2 Venting kit for PL/X 520 - 980

This venting kit comprises a single cowl and two pairs of extendable steel ducts. The venting kit's construction and assembly are similar to the PL/X 275-440 venting kit described above, except that:

- The kit provides an adjustable duct length of between 270 mm to 535 mm.
- The hole in the enclosure roof is 100 mm x 504 mm. There are two exhaust ports at the top of the PL/X and each pair of ducts is used with one of the ports.
- The cowl is supported on six 50 mm mounting pillars.
- Seal the interface between the ducts where they exit the roof of the enclosure.

Electrical installation

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

Electric shock risk! Electrical devices constitute a safety hazard.

Do not attempt to commission the PL/X unless you:

are gualified and have the knowledge and skills to use it safely.

• thoroughly understand the operation of the machine which has the PL/X installed.

 have read and understood this document, and are familiar with electrical wiring and safety standards.

Only use qualified personnel to design, construct, operate and maintain your systems.

Ensure personnel who use or maintain the equipment know of all hazards involved in your equipment and processes.

If you have any doubts about the safety of your system or process, do not proceed without first consulting an expert.

WARNING! PERSONAL INIURY AND/OR EQUIPMENT DAMAGE HAZARD

Before beginning to connect the drive, ensure that all power is OFF.

Make sure that you route power and control wiring in separate conduit/cable travs. Wiring must meet all applicable national and local electrical regulations.

Make sure that the voltages on the EL1/EL2/EL3 terminals are in-phase with the voltages on L1/L2/L3.

For reliable operation, the PL/X must control the supply side or dc side contactor through its CON1 and CON2 terminals.

CAUTION! EQUIPMENT DAMAGE HAZARD Avoid dropping small objects into the PL/X.

If the PL/X is in the horizontal plane, there is a danger that objects may be accidentally dropped into the air intake grille when connecting the busbars to the terminals. When the PL/X is vertical, items may fall into the fin section at the top or through the upper air intake grill.

As a precaution, we advise fitting a temporary cover over these areas when working on the PL/X, e.g. a piece of cardboard. Do not forget to remove the temporary cover before starting the PL/X. Anything dropped into the PL/X may interfere with the fan rotation.

7.1 Basic application wiring diagram

Below is a very basic speed or torque control application, combining Method 1 Power Wiring and Method 1 Control Wiring, which can later be adapted to your requirements. Note that this arrangement of the contactor allows continuous phase sensing on EL1/2/3.

Power wiring connections 7.2

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DÁMAGE HAZARD

Ensure that all wiring is electrically isolated and cannot be made "live" unintentionally by other personnel.

If performing high voltage or dielectric tests on the motor or wiring, you **must** disconnect the PL/X first. Failure to do so will invalidate the Warranty.

7.2.1 Forces applied to the power terminals

Avoid applying mechanical stress to the heavy-current terminals L1/2/3 and A+ A-. Within the enclosure, support any cables or busbars bolted to these terminals. Do not rely on the drive terminals to support the weight of the external connections.

Do not use the connecting bolt to hold both the terminal and the connecting cable or busbar in alignment. It will cause permanent stress on the terminal if levered into alignment before inserting the bolt. Always support the connection to the terminal so that the terminal bolt only tightens them together, and is not used to maintain their relative positions to each other. The respective holes in the terminal and the connecting busbar should remain in alignment without the aid of the terminal bolt. You can then be sure that there is minimum stress on the drive terminal busbar.

When tightening the connecting bolts of terminals L1/2/3 and A+ A-, do not subject the busbar to a turning moment when tightening the nut. To do this, always use two spanners; one on the bolt head to provide a counter torgue and one on the nut for the tightening torque.

Power wiring methods 7.3

IMPORTANT: Please read the General Risks and safety information at the front of this manual before proceeding.

There are various ways of implementing main contactor control, and each method has its advantages and disadvantages.

Refer to "Figure 23 Basic application wiring diagram: speed or torque control" on page 50 and substitute your selected Power Wiring method into the diagram.

- Refer to "10.9 Installation guide for EMC" on page 110. .
- Refer to "Figure 35 Earthing diagram for a typical installation" on page 112.
- Refer also to "Figure 34 Wiring diagram for AC supply level to L1/2/3 different to EL1/2/3 ٠ (e.g. low voltage field)" on page 107.

7.3.1 METHOD 1 - Power wiring (QuickStart)

Figure 24 Main contactor isolating AC stack supply

Advantages

- The auxiliary supplies are permanently energised, allowing the synchronisation circuits to lock onto the supply before applying power to the motor resulting in a fast release of current to the armature because it avoids the synchronisation delay.
- The field can remain energised after contactor drop-out, allowing dynamic braking and/or condensation prevention in standby field mode.

Disadvantages

- The main contactor does not electromechanically isolate the field winding. Without additional measures, this may contravene safety codes.
- The field standby level may not be set to a low enough level by the user and could cause overheating of the field winding.
- Phase forward may occur before the contactor has closed, causing fault current. (The time delay from START command to phase forward is 75 ms.)

Flectrical installation

7.3.2 METHOD 2 - Power wiring

Figure 25 Main contactor isolating AC stack and auxiliary supplies

Advantages

- The main contactor electro-mechanically isolates the field winding.
- Some retro-fit installations can only provide the three main phases because the main contactor is remotely located to the drive panel, in which case this may be the preferred wiring method.
- The PL/X cannot phase forward until the contactor has closed because EL1/2/3 take time to synchronise.

Disadvantages

- The auxiliary supplies are de-energised . by the main contactor, causing a turn-on delay of approximately 0.75 seconds for the synchronisation circuits to establish a lock onto the supply before applying power to the motor.
- The field cannot remain energised after contactor drop-out, thus prohibiting dynamic braking and/or condensation prevention in standby field mode.

METHOD 3 - Power wiring 733

Figure 26 Main contactor isolating DC armature

Advantages

- The auxiliary supplies are permanently energised, allowing the synchronisation circuits to lock onto the supply before applying power to the motor resulting in a fast release of current to the armature because it avoids the synchronisation delay.
- The field can remain energised after contactor drop-out, allowing dynamic braking and/or condensation prevention in standby field mode.

Disadvantages

- The main contactor does not electromechanically isolate the field winding. Without additional measures, this may contravene safety codes.
- The field standby level may not be set to a low enough level by the user and could cause overheating of the field winding.
- The AC supply is permanently connected to the PL/X unless further provision is made to isolate the supplies.

WARNING! PERSONAL INJURY AND/OR EOUIPMENT DÁMAGE HAZARD

When using a dc side contactor, the armature **MUST** be connected to the remote sense terminals T41 and T43, as shown on Page 54, to ensure that the PL/X can measure armature voltage when the dc side contactor is deenergised. Failure to do this will cause a flashover of the commutator because the AVF feedback is lost when the contactor opens.

Refer also to "11.6 CHANGE PARAMETERS / STOP MODE RAMP" on page 149 and "Figure 42 Contactor Control - block diagram" on page 150.

POWER WIRING CONNECTIONS

Power

wiring

3-phase

1	Use the quick-release catches on the sides of the endcaps to remove the PL/X top and
	bottom endcaps.

- 2 Connect all power supplies: L1, L2, L3, EL1, EL2, EL3, T51, T52, T53, and B1, B2 (where fitted). Refer to "7.4.4 Power supplies" on page 57.
 - **NOTE** The phase rotation of the 3-phase supply is unimportant. However, there **MUST** be phase-equivalence for L1 to EL1, L2 to EL2, and L3 to EL3. Take particular care where L1/2/3 and EL1/2/3 are feeding from different sides of a transformer:

Only use star-star or delta-delta transformers. If the transformer is star-delta, there will be a phase mismatch, and the PL/X will fail to operate correctly. Use cables with a minimum rating of 1.25 x full load current. Copper conductors must be rated for 60°C, or 75°C if rated at over 100 A. Connect a substantial earth (ground) to the busbar provided Protective Earth (PE) at the base of the drive. The terminal is identified by the connections international ground symbol. Fit a 3-phase contactor having suitable voltage and current ratings (AC1) in the main AC supply. Provide the contactor coil with the contactor appropriate control supply, which is applied by the PL/X to the contactor coil using terminals 45 and 46.

- The contactor is not required to switch current but is involved with sequencing and carrying power to the PL/X.
- If safety mandates require that the contactor coil must be able to be de-energised externally to the drive, then you must arrange for the CSTOP terminal 35 to open at least 100 ms before the main contactor opens. Failure to do so will invalidate the Warranty and may damage the PL/X by preventing the armature current from having the ability to commutate to zero before supply removal. Refer to "7.3 Power wiring methods" on page 52 for advice on using DC side contactors or other power sequencing options.
- If the contactor coil's VA rating exceeds the ratings of terminals 45 and 46, you must use a slave relay of a suitable rating to drive the contactor coil.
- **NOTE** If your main contactor has a final closing time delay of greater than 75 ms, you must insert an auxiliary normally-open contact on the main contactor in series with the RUN input on T31. This will prevent the PL/X from trying to deliver power until the main contact has closed. Alternatively, use the contactor wiring method shown on Page 61.

3-phase Fit this in series with the AC supply between the contactor and line reactor power terminals. It also helps in avoiding the transmission of main contactor mechanical operating shock to the PL/X busbars.

Flectrical installation

POWER WIRING CONNECTIONS

	Fusing	rotect the PL/X using correctly rated semiconductor fuses - three nain fuses and three auxiliary fuses. Failure to do so will invalidate ne Warranty.	ž
	NOTE	or applications where regeneration occurs most or all of the time, e recommend also fitting a DC-side semiconductor fuse to provid ktra protection for the PL/X in the event of an unsequenced powe oss when regeneration is taking place. Refer to "10 Technical pecifications" on page 91 for fuse ratings.	e r
3	Ensure all conn tightening torq	tions to the power terminals are tight. Refer to "7.4.3 Terminal s" on page 56. Power terminal fastenings are:	
	PL/X 5-50 PL/X65-98	M6 M10	

7.4.1 Output voltage range

PL/X 5-980

Armature	L 0 to 1.3 x AC supply (absolute upper limits)
	L* 0 to 1.2 x AC supply
	LX 0 to 1.2 x AC supply
	ote that 1.1 x AC supply is recommended if supply variations exceed -6%.
Field	to 0.9 x AC supply on auxiliary terminals (EL1, EL2, EL3).

* PL arranged to use regenerative braking.

7.4.2 Output current range

PL/X 5-980

Armature* 0 to 105% continuous.150% for 25 seconds.+/- for PLX.FieldProgrammable minimum to 100% continuous with fail alarm

* 0 to 105% continuous for models having overload capability. Models PL440, PLX440, PL980, PLX980 have no overload capability.

NOTE: There is a factory option available to allow high inductance loads to be driven by the armature output.

7.4.3 Terminal tightening torques

Terminals	Model	Tightening torque
T1 to T53	PL/X 5-980	0.5 Nm (4 in.lbf)
EL1, EL2, EL3, F+, F-	PL/X 5-145	1.0 Nm (9 in.lbf)
EL1, EL2, EL3, F+, F-	PL/X 185-980	3.9 Nm (35 in.lbf)
L1, L2, L3, A+, A-	PL/X 5-50	3.9 Nm (35 in.lbf)
L1, L2, L3, A+, A-	PL/X 65-980	27.0 Nm (242 in.lbf)
Fan supply terminals	PL/X 185-980	1.0 Nm (9 in.lbf)

Power supplies 7.4.4

The power supplies you provide MUST be suitable for the motor used.

PL/X 275-980 models are available with the L1, L2, L3 main supply terminals with a top entry (standard) or bottom entry (option).

7.4.4.1	Main supply i	nputs: L1, L2, L3
	PL/X 5-265 PL/X 275-980	12-500 Vac nominal ±10%, 50-60 Hz, 3-phase (CE rating) 12-480 Vac nominal ±10%, 50-60 Hz, 3-phase (UL rating) standard model 12-500 Vac nominal ±10%, 50-60 Hz, 3-phase (CE rating)
		MV model (option) 12-600 Vac nominal ±10%, 50-60 Hz, 3-phase (CE rating)
		HV model (option) 12-690 Vac nominal ±10%, 50-60 Hz, 3-phase (CE rating)
7.4.4.2	Auxiliary supp	oly inputs: EL1, EL2, EL3
	PL/X 5-265	100-500 Vac nominal ±10%, 50-60 Hz, 3-phase (CE rating) 100-480 Vac nominal ±10%, 50-60 Hz, 3-phase (UL rating)
	PL/X 275-980	standard model 100-480 Vac nominal ±10%, 50-60 Hz, 3-phase (CE rating)
		MV model (option) 100-600 Vac nominal ±10%, 50-60 Hz, 3-phase (CE rating)
		HV model (option) 100-690 Vac nominal ±10%, 50-60 Hz, 3-phase (CE rating)
7.4.4.3	Control supply	y inputs: T51, T52, T53
	PL/X 5-980	110-240 Vac ±10%, 50-60 Hz, 1-phase, 50 VA
7.4.4.4	Supply input f	for the internal fan: B1, B2
	PL/X 185-265	110 Vac, 50/60 Hz, 50 VA
	PL/X 275-440	240 Vac, 50/60 Hz, 100 VA
	PL/X 520-980	240 Vac, 50/60 Hz, 200 VA

Table 7 Power supplies - ratings

Refer to "10.7.2 L1/2/3 AC supply level different to EL1/2/3" on page 107 if your supplies are different when using a single-phase isolated transformer. Only use star-star or delta**delta transformers.** If the transformer is star-delta, there will be a phase mismatch, and the unit will fail to operate correctly.

7.5 Control wiring methods

Study this section carefully and choose the control wiring mode required for your application.

Refer to "Figure 23 Basic application wiring diagram: speed or torque control" on page 50 and substitute your selected Control Wiring method into the diagram.

Internal contacts +24 V COIL energised by Stop mode (START or JOG) (AND CSTOP ramp delay INTERNAL RELAY Terminated CONTACTS by RUN going LOW ()g 47 46 (31) (32) (33) (34) (35) (36) 0 V CONTACTOR COIL SUPPLY RUN START RC SNUBBER EMERGENCY across contactor coil. STOP JOG Typical values are REL AY 100Ω 1 W, and 0.1μ F, both rated for the coil supply volts * Optional: May be permanently connected to +24 V <u>}_____</u>

7.5.1 METHOD 1 - Control wiring (QuickStart)

Figure 27 Using normally-open contacts for simple STOP/START/JOG

We recommend using an auxiliary contactor of the main contactor that is in series with RUN whether or not an ac or dc side contactor is in use. It prevents problems due to a slow closing contactor and ensures that current will cease should the contactor open due to coil failure or loss of coil supply. RUN (T31) must be at 24 V (T35) to enable the current to flow.

NOTE: START or JOG contacts will energise the contactor. Removal of START will result in the STOP MODE RAMP block taking control over stopping time and contactor de-energisation. Removal of JOG will result in the JOG/SLACK RAMP block taking control over stopping time and contactor de-energisation. Stopping time depends on whether regeneration is possible. Interruption of the RUN command together with START or JOG will result in termination of the STOP MODE RAMP or JOG/SLACK RAMP block, whichever is appropriate. The CSTOP must be high for at least 50 ms before START or JOG goes high. Refer to "7.3.3 METHOD 3 - Power wiring" on page 54 (with ramp to stop, jog and slack take up).

Refer to "11.6 CHANGE PARAMETERS / STOP MODE RAMP" on page 149.

7.5.2 METHOD 2 - Control wiring

Figure 28 Using push buttons for simple STOP/START (coast to stop)

We recommend using an auxiliary contactor of the main contactor that is in series with RUN whether or not an ac or dc side contactor is in use. It prevents problems due to a slow closing contactor and ensures that current will cease should the contactor open due to coil failure or loss of coil supply. RUN (T31) must be at 24 V (T35) to enable the current to flow.

NOTE: START or JOG contacts will energise the contactor. Removal of START will result in the STOP MODE RAMP block taking control over stopping time and contactor de-energisation. Removal of JOG will result in the JOG/SLACK RAMP block taking control over stopping time and contactor de-energisation. Stopping time depends on whether regeneration is possible. Interruption of the RUN command together with START or JOG will result in termination of the STOP MODE RAMP or JOG/SLACK RAMP block, whichever is appropriate.

NOTE: The CSTOP must be high for at least 50 ms before START or JOG goes high.

Refer to "7.3.3 METHOD 3 - Power wiring" on page 54 (with ramp to stop, jog and slack take up).

Refer to "11.6 CHANGE PARAMETERS / STOP MODE RAMP" on page 149.

7.5.3 METHOD 3 - Control wiring

Figure 29 Using push buttons for STOP/START (with ramp to stop, jog, slack take-up)

We recommend using an auxiliary contactor of the main contactor that is in series with RUN whether or not an ac or dc side contactor is in use. It prevents problems due to a slow closing contactor and ensures that current will cease should the contactor open due to coil failure or loss of coil supply. RUN (T31) must be at 24 V (T35) to enable the current to flow.

NOTE: This circuit will cause the STOP MODE RAMP to operate when the STOP button opens during running. The speed then ramps down under the control of the STOP MODE RAMP. The main contactor will de-energise after the STOP MODE RAMP parameters have been satisfied. Refer to "Figure 44 Contactor drop-out" on page 152.

NOTE: The CSTOP must be HIGH for at least 50 ms before START goes HIGH.

Models that have the regenerative stopping facility will regenerate to maintain the ramp rate.

The JOG button operates as a JOG function when the drive is stopped (START is open), and operates as the SLACK 1 take-up function when the drive is running (START is closed).

With the STOP button held open, no running button is operative (JOG/SLACK or START).

Control wiring connections 7.6

IMPORTANT: Please read the General Risks and safety information at the front of this manual before proceeding.

There are various ways of implementing main contactor control, and each method has its advantages and disadvantages.

Refer to "Figure 23 Basic application wiring diagram: speed or torque control" on page 50 and substitute elements of your Power Wiring and Control Wiring method selections into the diagram as required.

WARNING! **PERSONAL INJURY AND/OR** EOUIPMENT DÁMAGE HAZARD

Ensure that all wiring is electrically isolated and cannot be made "live" unintentionally by other personnel.

If performing high voltage or dielectric tests on the motor or wiring, you **must** disconnect the PL/X first. Failure to do so will invalidate the Warranty.

- 1. Connect all control wiring.
- Remember to make a control clean protective earth connection to terminal 13. 2.

NOTE: Control wiring should have a minimum cross-section of 0.75 mm².

The following interfaces are provided:

- Digital inputs able to recognise logic levels using 24 V logic.
 - Digital inputs for encoder signals of various amplitudes and type.
- Digital outputs able to drive 24 V relays, lamps, sensors, etc.
- Analog inputs able to accept linear bipolar reference or feedback signals.
- Analog outputs able to provide linear bipolar signals.

Because many of the terminals are dual-function, there are up to:

- 17 digital inputs
- 8 analog inputs (can also be used as digital inputs)
- 7 digital outputs (4 digital outputs can be independently programmed as inputs)
- 4 analog outputs (3 are programmable)

NOTE:

- Use DIP digital inputs on T14-17 as encoder inputs (low noise immunity).
- Use DIO digital input/outputs on T18-21 for 24 V logic (standard noise immunity).
- Use UIP analog inputs on T2-9 as digital inputs (optimum noise immunity).

Electrical installation

7.6.1 About digital inputs

The most frequent types of problem is short-circuits and excessive voltages when applied to the digital inputs and outputs:

- All digital inputs and outputs can withstand up to +50 V applied continuously.
- All digital outputs, including the 24 V customer supply, can withstand a direct shortcircuit to 0 V.

7.6.1.1 RUN digital input

The RUN input provides a means of electronically inhibiting PL/X operation. A low RUN input inhibits all control loops causing the armature current to cease and can cause the motor to stop. RUN also controls the field. Refer to "11.13 CHANGE PARAMETERS / FIELD CONTROL" on page 182.

The RUN input going low also causes an immediate contactor drop-out when the contactor is either being held in by the zero speed detector while the motor is decelerating or by the contactor drop-out delay.

WARNING! PERSONAL INJURY HAZARD

Do not rely on any drive function to prevent the motor from operating when personnel are undertaking maintenance or when machine guards are open. The Safety Codes do not accept electronic control as a sole means of inhibition for the PL/X. Always isolate the power source before working on the PL/X or the motor or load.

7.6.1.2 START and JOG digital inputs

The START (T33) and JOG (T32) inputs provide the following operating features:

- Normal running.
- Jogging with two selectable jog speeds and programmable contactor drop-out delay.
- Crawling the crawl speed is a programmable parameter.
- Slack take-up with two selectable take-up speeds.

With START high and JOG low, JOG going high acts as a slack take-up.

With START low, the JOG input is a jog control. T19 (Jog mode select) input selects between jog/slack speed 1 and jog/slack speed 2:

With JOG low and T19 (Jog mode select) high, then START going high acts as the crawl control. Crawl uses the Run mode ramp times to accelerate, and the Stop mode ramp times to stop. Refer to "11.4.6 42)JOG MODE SELECT" on page 142.

7.6.1.3 Encoder inputs

- DIP3 (T16, B train or sign) and DIP4 (T17, A train) can accept bi-directional encoder pulse trains.
- DIP2 (T15) can accept a MARKER for spindle orientation.

The outputs from the encoder must be able to provide a logic low below 2 V, a logic high above 4 V; and may range up to 50 V maximum, up to 100 kHz. These two inputs are singleended and non-isolated. For other types of encoder output, you must provide some external conditioning circuitry. The encoder format may be pulse-only for single-direction, pulse with

sign, or phase quadrature. Refer to "11.2 CHANGE PARAMETERS/CALIBRATION/ENCODER SCALING" on page 127. NOTE: The Universal Inputs (UIPs) offer much higher noise immunity for 24 V logic signals.

7.6.2 About digital outputs

When digital outputs become shorted, the 24 V output continues to operate with a current capability of 50 mA to ensure that the CSTOP line does not go low and shut down the PL/X. If the PL/X must continue to run when experiencing a shorted digital output, a digital output set permanently high may be used as an auxiliary 24 V power output for other tasks, allowing the main 24 V output to be devoted entirely to the CSTOP function.

Figure 30 Output configuration (DOP1 to DOP3, DIO1 to DIO4)

PL/X digital outputs can be ORed together or ORed with outputs from other drives, proving useful if an external event must wait for several outputs to go low.

7.6.2.1 Short-circuit/overload condition

If a short-circuit or overload occurs on one or more digital outputs, all digital outputs are disabled, and the short-circuit condition is flagged. In this event, it is possible to enable or disable a drive trip. If the drive trip is disabled, the PL/X will continue to run (providing the fault has not caused external user relay logic to interrupt normal running).

The short-circuit condition may be signalled on one of the outputs by a low state if desired.

If the short-circuit is removed, the digital outputs will recover to their original state - refer to "13.1.4 174)DOP SCCT TRIP EN" on page 228 and "13.3 MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE" on page 234 and "12.6 DIAGNOSTICS / DIGITAL IO MONITOR" on page 218.

7.6.3 **About analog inputs**

These accurately measure ± 10 V signals with excellent response time and with up to 2 mV +sign resolution.

You can monitor all analog input voltages - refer to "12.5 DIAGNOSTICS / ANALOG IO MONITOR" on page 216.

Also, the voltage range of each input can be set to ± 5 , ± 10 , ± 20 or ± 30 V, allowing the use of signals other than 10 V full scale and enabling you to use the input as a sophisticated digital input. To do this, program the input to the 30 V range and set the programmable threshold detector at 15 V to recognise a 0 or 1.

Refer to "11.9.1 Using small speed inputs" on page 164. The default gives low gain for small inputs.

NOTE: Using Universal Inputs (UIPs) as digital inputs provides improved noise immunity and adjustable threshold.

To use 4-20 mA loop signals, fit an external burden resistor of 220 Ω between the input and 0 V. Then, set up the relevant UIP to read the resulting voltage signal generated by passing the signal current through the burden.

Refer to "17.4.2.1 4-20 mA loop input SETUP" on page 330

> Figure 31 A 4-20 mA signal flowing through an external burden resistor

7.6.3.1 Analog tachogenerator input

This input is intended solely for the connection of an analog bipolar DC tachogenerator.

The PL series 2-guadrant drives can also use an AC tachogenerator with a rectified output, but we do not recommend this. Connect the tachogenerator to terminals T25 (0 V) and T26 (TACH). A dc voltage of up to ± 200 Vdc maximum can be applied directly to T26 with respect to T25.

Refer to "11.1.8 9)SPEED FBK TYPE" on page 120 to select tacho feedback, and "11.1.7 8)MAX TACHO VOLTS" on page 119 to match the 100% feedback voltage and sign on T26.

For forward motor rotation corresponding to a positive reference signal, the tachogenerator feedback voltage sign at terminal T26 (TACH) with respect to T25 (0 V) must correspond to the sign selected in the calibration menu.

Feedback voltages down to 0 V can be selected. However, it is not advisable to use tachos with a voltage less than 10 V at full speed in the interest of accuracy and smooth operation.

7.6.4 Motor thermistor

UL Requirement: a thermistor **must** be fitted.

It is good practice to protect DC motors against sustained thermal overloads by fitting temperature sensitive resistors or switches in the field and inter-pole windings of the machine.

7.7 Control terminals - electrical specification

Below is the electrical specification for each terminal. Making changes to factory default settings does not affect the electrical specification.

Control term	inals - electrical specification	Term	inal
0 V		0 V	1
Universal		UIP2	2
Inputs	8 analog inputs with up to 2 mV +sign resolution.	UIP3	3
	4 input voltage ranges ±5/10/20/30 V on each input.	UIP4	4
	8 digital inputs with adjustable thresholds.	UIP5	5
	Input impedance 100 k Ω for input scaling at 5 and 10 V range.	UIP6	6
	Input impedance 50 k Ω for input scaling above 10 V range.		/
			0 9
Analog	4 analog outputs (+0.4%)	011 5	
Outputs	$\frac{1}{2}$ arrage surplies and $\frac{1}{2}$ output representing armsture current	AOP1	10
(and Iarm on	2.5 mV + cign resolution		
T29)		AOP2	11
	not protected for simultaneous shorts. Output current ±5 mA		
	maximum.	AOP3	12
	Output range 0 to ±11 V.		
0 V	Control clean protective earth connection.	0 V	13
Digital	Logic low below 2 V. Logic high above 4 V. Low noise immunity.	DIP1	14
Inputs	DIP3 and DIP4 may also be used for encoder quadrature signals.	DIP2	15
	Refer to "7.6.1.3 Encoder inputs" on page 62 and "11.2	DIP3	16
	page 127 for encoder information.		17
		DIP4	17
Digital	4 disital incute. Also programmable as autouts (refer to Disital	DIO1	18
In/Outputs	outputs below).	DIO2	19
	Logic low below 6 V. Logic high above 16 V.	DIO3	20
	Refer to DOP1-3 below when used as digital outputs.		21
		DIO4	21
Digital Outputs	This specification also applies to DIO1/2/3/4 when they are programmed as outputs.	DOP1	22
	3 outputs (for 4 more outputs, use DIO1/2/3/4).		
	Short-circuit protected (range 22 to 32 V for OP high).	DOP2	23
	Over-temperature and over-voltage protected to +50 V.		
	Each output can deliver up to 350 mA. Total for all outputs is 350 mA.	DOP3	24

This terminal connector is devoted to essentially fixed function controls:

Control terminals - electrical specification		Term	inal
0 V	Control clean protective earth connection.	0 V	25
Tacho Input	±200 V range. Input impedance 150 kΩ.	TACH	26
Reference Outputs	±10.00 V, 0.5%, 10 mA maximum. Short-circuit protection to 0 V.	+10 V	27
		-10 V	28
Armature Current Output	±5 V linear output for ±100% model rating current. Output current capability 10 mA maximum. Short-circuit protection to 0 V. Programmable Uni-polar or Bipolar output mode (tolerance ±5%).	Iarm	29
Thermistor	UL Requirement: a thermistor must be fitted. Motor temperature thermistor. If unused then connect to 0 V. OK<200 Ω, Overtemp >2 kΩ. Connect from THM to 0 V.	THM	30
Contactor Control	DRIVE ENABLE: 24 V Logic input. Logic low below 6 V. Logic high above 16 V. Input impedance 10 $k\Omega.$	RUN	31
	JOG: 24 V Logic input. Logic low below 6 V. Logic high above 16 V. Input impedance 10 $k\Omega.$	JOG	32
	START/STOP: 24 V Logic input. Logic low below 6 V. Logic high above 16 V. Input impedance 10 $k\Omega.$	START	33
	COAST STOP: 24 V Logic input. Logic low below 6 V. Logic high above 16 V. Input impedance 10 k $\Omega.$	CSTOP	34
	+24 V SUPPLY OUTPUT: Short-circuit protected with fault annunciation. Refer to "7.6 Control wiring connections" on page 61. Over-voltage protection to +50 V. Shares total current capability of 'Digital Outputs' (350 mA), plus extra 50 mA of its own. Total maximum available 400 mA.	+24 V	35
0 V	Control clean protective earth connection.	0 V	36

These terminal connectors are on the lower power board:

Control term	inals - electrical specification	Term	inal
Remote AVF	RA+ RA- used for remote sensing of armature volts. NOTE: when using remote AVF the armature volts signal is read 3.3% high.	RA+	41
	Do not connect to this terminal.	NC	42
	RA+ RA- used for remote sensing of armature volts. NOTE: when using remote AVF the armature volts signal is read 3.3% high.	RA-	43
	Do not connect to this terminal.	NC	44
Volt-Free Contacts	Volt-free contacts for main contactor coil	CON1	45
		CON2	46
Latch	Volt-free contact operates at same time as CON1/2,	LAT1	47
	240 Vac, 500 VA.	LAT2	48

Earth	Used for dirty earth connection of control supply.	EARTH	51
Control Power	Live and Neutral connections for control power 100-240 Vac, 50-60 Hz $\pm 10\%$, 50 VA.	N	52
	NOTE: The control supply is required to power the PL/X electronics and must be applied before running.	L	53

7.8 **Control terminals - default functions**

The default functions will suit most applications. However, you can select an alternative function for all programmable terminals. NOTE: Control terminals on the lower power board, terminal numbers 41 to 53, are not programmable.

To restore the PL/X to its default settings, refer to "1.7.4 How to reset the unit" on page 7. Also, refer to "17.19.1 677)RECIPE PAGE" on page 363.

Control terminals - default functions			inal
0 V terminal	This $\ensuremath{\textbf{MUST}}$ be used for protective clean earth connection.	0 V	1
Aux. Speed Reference	ANALOG INPUT: 0 to ± 10 V linear input for 0 to $\pm 100\%$ speed.	UIP2	2
Speed Reference / Current Demand	ANALOG INPUT: 0 to ± 10 V linear input for 0 to $\pm 100\%$ speed.		
	NOTE: This analog input is sampled faster than the others, for very rapid response applications, e. g. as a current reference. Refer to "Figure 46 SPEED CONTROL - block diagram" on page 161.	UIP3	3
	Refer to "11.9.1 Using small speed inputs" on page 164. The default gives a low gain for small inputs.		
Ramped Speed Reference	ANALOG INPUT: 0 to ± 10 V linear input for 0 to $\pm 100\%$ speed.		
	This input is routed through a programmable up/down ramp. Refer to "11.9.1 Using small speed inputs" on page 164. The default gives a low gain for small inputs.	UIP4	4
Lower Current Clamp (-ve)	ANALOG INPUT: 0 to -10 V linear input for 0 to -150% armature current clamp level.		
	NOTE: When negative, it operates as a clamp on the current demand generated by the speed loop. When positive, it drives the demand and ignores the speed loop. Note that a demand level cannot override a clamp level. Refer also to T21.	UIP5	5
Main Current Limit / Upper	ANALOG INPUT: 0 to +10 V linear input for 0 to +150% armature current clamp level.	-	
Current Clamp (+ve)	NOTE: When positive, it operates as a clamp on the current demand generated by the speed loop. When negative, it drives the demand and ignores the speed loop. Note that a demand level cannot override a clamp level. Refer also to T21.	UIP6	6
Motorised pot simulator, preset value enable	DIGITAL INPUT: While this terminal is held high, the motorised pot simulator is moved immediately to 0.00% (default preset value). When it is taken low, the motorised pot simulator output moves according to the Increase/Decrease inputs on terminals T8/T9.	UIP7	7
Motorised pot simulator	DIGITAL INPUT: Increase.	UIP8	8
Motorised pot simulator	DIGITAL INPUT: Decrease.	UIP9	9
Speed Feedback	ANALOG OUTPUT: 0 to ±10 V linear output for 0 to ±100% speed feedback. Programmable Uni-polar or Bipolar output mode.	AOP1	10

Control terminals - default functions			inal
Total Speed Reference	ANALOG OUTPUT: 0 to ± 10 V linear output for 0 to $\pm 100\%$ total speed reference.	AOP2	11
Total Current Demand	ANALOG OUTPUT: 0 to ± 10 V linear output for 0 to $\pm 100\%$ current demand. Programmable Unipolar or Bipolar output mode.	AOP3	12
0 V terminal	This MUST be used for protective clean earth connection.	0 V	13
Spare input	DIGITAL INPUT: Encoder use	DIP1	14
Marker input	DIGITAL INPUT: Encoder use	DIP2	15
Encoder (B train or sign)	DIGITAL INPUT: Encoder use	DIP3	16
Encoder (A train)	DIGITAL INPUT: Encoder use	DIP4	17
Zero Reference Interlock	DIGITAL INPUT: Selects an interlock (CHANGE PARAMETERS / ZERO INTERLOCKS) to prevent the main contactor from energising if the speed reference does not first return to less than the 117>ZERO INTLK SPD % setting.	DIO1	18
Jog Mode Select	DIGITAL INPUT: A low input selects jog/slack speed 1. A high input selects jog/slack speed 2. Refer to CHANGE PARAMETERS / JOG CRAWL SLACK .	DIO2	19
Ramp Hold	DIGITAL INPUT: When the input is high, the CHANGE PARAMETERS < RUN MODE RAMPS output is held at the last value, irrespective of the ramped reference input.	0102	20
	MODE RAMPS output follows the ramped reference input, with a ramp time determined by the 22)FORWARD UP TIME, 23)FORWARD DOWN TIME, 24)REVERSE UP TIME, 25)REVERSE DOWN TIME parameters.	DIOS	20
Dual Current Clamp Enable	DIGITAL INPUT: This input alters the configuration of the current clamps.		
	When the input is low, analog input T6 provides a symmetric bipolar current limit.	DIO4	21
	When the input is high, analog input T6 is the positive current clamp and analog input T5 is the negative current clamp.		
Zero Speed Digital output	DIGITAL OUTPUT:117>ZER0 INTLK SPD 2 can modify the operating level of this output to give the desired speed threshold of operation.	DOP1	22
	A high output +24 V indicates zero speed.		
Ramping flag	DIGITAL OUTPUT: This output goes high when CHANGE PARAMETERS > RUN MODE RAMPS is ramping. (Used to prevent speed loop integration during ramp).	DOP2	23
Drive Healthy	DIGITAL OUTPUT: This output is high when the PL/X is healthy, meaning that no alarms have tripped and the PL/X is ready to run.	DOP3	24

Control terminals - default functions

Terminal

0 V terminal	This MUST be used for protective clean earth connection.	0 V	25
DC Tachogenerator	INPUT: Full speed setting range: ±10 V to ±200 V. Refer to 8)MAX TACHO VOLTS .	TACH	26
User +10 V Reference Output	+10 V.	+10 V	27
User -10 V Reference Output	-10 V.	- 10 V	28
Armature Current Output	0 to \pm 5 V linear output for 0 to \pm 100% model rating current.	IARM	29
Motor Thermistor Input	UL Requirement: a thermistor must be fitted.		
	Connect the motor over-temperature sensors in series between terminals T30 and T36. A motor over-temperature alarm is displayed if the external resistance between T30 and T36 exceeds 1800 $\Omega \pm 200 \Omega$. Refer to "13.3 MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE" on page 234 - THERMISTOR ON T30 .	ТНМ	30
	Terminals T30 and T36 (0 V COM) must be linked if not using external over-temperature sensors.		
RUN	DIGITAL INPUT: Drive enable. Electronic enable for current loop and contactor drop out delays.		
	The RUN input provides a means of electronically inhibiting PL/X operation. If the RUN input goes low during the stopping process, either heading for zero speed or during the delay period, the contactor will drop out straight away, causing the motor to stop.		
	RUN also controls the field - refer to "11.13 CHANGE PARAMETERS / FIELD CONTROL" on page 182.		
	RUN may also be used as a programmable digital input if not required as a RUN function.	RUN	31
	WARNING!		
	Do not rely on any drive function to prevent the motor from operating when personnel are undertaking maintenance, or when machine guards are open. The Safety Codes do not accept electronic control as a sole means of inhibition for the PL/X. Always isolate the power source before working on the PL/X or the motor or load.		

Electrical installation

JOG	DIGITAL INPUT: Jog input with programmable contactor drop-out delay. When the Jog input is held high, the PL/X jogs (rotates slowly while being requested), provided that T33 (START) is low. Remove the Jog input to cause the PL/X to ramp down to zero and obey the Jog/Slack Ramp time. Input T19 selects the jog speeds. Refer to START input below for further information about the jog control. Refer to "11.4.6 42)JOG MODE SELECT" on page 142.	JOG	32
START/STOP main contactor control	DIGITAL INPUT: Start/stop. This drops the contactor out at zero speed. The drive will not start unless all alarms are clear. The PL/X will not restart after alarm-induced contactor drop-out unless START is removed for at least 50 ms and re-applied.		
	When the input is high, the PL/X will operate provided that:		
	There are no alarms.		
	• The coast stop input (T34) is already high.		
	• The PL/X run input (T31) is high.		
	The Jog input is low.		
	When the input is low, the PL/X performs a ramped stop to zero speed. The rate of deceleration is set according to the programmed 56 > STOP RAMP TIME . Refer to CHANGE PARAMETERS < STOP MODE RAMP for other parameters affecting this ramped stop.	START	33
	For all PL/X models, the main contactor de-energises when the motor reaches zero speed.		
	Refer to "11.4.6 42)JOG MODE SELECT" on page 142.		
	NOTE: The user control input contact must be maintained using external interlocking relay logic, or LAT1/2 on terminals 47 and 48.		
	Refer to "7.5.1 METHOD 1 - Control wiring (QuickStart)" on page 58.		
	Refer to "7.5.2 METHOD 2 - Control wiring" on page 59.		
	Refer to "7.5.3 METHOD 3 - Control wiring" on page 60.		

lermina	۱I
I CI IIIIIIC	

COAST STOP main contactor	DIGITAL INPUT: Coast stop. This drops the contactor out immediately (100 ms).		
control	When the input is high, the PL/X operates normally.		
	When the input is low (0 V) or open-circuit, the main contactor is open and the PL/X no longer operates.		
	When the input goes low during running, the main contactor de-energises within 100 ms and the motor coasts to rest under the influence of either external factors, e.g. friction and inertia, or by using an external dynamic braking resistor to dissipate the rotational energy	CSTOP	34
	NOTE: CSTOP must be high for at least 50 ms before START goes high.		
	NOTE: When digital outputs short-circuit, the 24 V output (T35) continues to operate with a current capability of 50 mA. Therefore, the CSTOP line does not go low and shut down the PL/X.		
+24 V Supply	+24 V SUPPLY OUTPUT: for external logic (range 22-32 V)	+24 V	35
0 V terminal	This MUST be used for protective clean earth connection.		36
Remote AVF Positive input from motor armature	INPUT: RA+ RA- used for remote sensing of armature volts (automatic internal disconnection). Using a DC contactor with field weakening allows the field control circuit to continue to sense the back-emf of the motor after the contactor has opened and hence prevent a sudden dangerous strengthening of the field current.	RA+	41
	NOTE: The AVF is increased by 3.3% when using remote sensing, causing a -3.3% speed scale change.		
Unconnected terminal	Do not connect to this terminal.	NC	42
Remote AVF Negative input from motor armature	Refer to T41.	RA-	43
Unconnected terminal	Do not connect to this terminal.	NC	44
Volt-Free Contact	For main contactor - operated by START/JOG function when CSTOP is high.	CON1	45
Volt-Free Contact	For main contactor - operated by START/JOG function when CSTOP is high.	CON2	46
Volt-Free Contact	For latching main contactor push button.	LAT1	47
Volt-Free Contact	For latching main contactor push button.	LAT2	48

Control terminals - default functions Termin						
Earth	Used for dirty earth connection of control supply.	EARTH	51			
Control Power	If the voltage falls below 80 Vac, the PL/X begins an orderly shutdown sequence.	N	52			
	Refer to "10.7 Supply loss shutdown" on page 106.	L	53			

7.9 Signal test pins

These test pins are used to monitor certain feedback signals:

0V Ia If AVF Vref

The **Ia** signal is an attenuated, unfiltered, inverted version of terminal 29 and may be used to observe the current response of the PL/X. Refer to "17.19.2 678)MAX CUR RESPONSE" on page 365. Refer also to "17.5.1 250)Iarm OP RECTIFY" on page 336. Its signal sign and amplitude is 0 to \pm 2 V linear output for 0 to \pm 100% model rating current (inverted) for the unrectified mode, and 0 to -2 V linear output for 0 to \pm 100% model rating current for the rectified mode (refer to "17.5.1 250)Iarm OP RECTIFY" on page 336).

The other feedback signals are for factory use only.

Figure 32 Signal test pins

How to use the keypad 8

Diagnostic Summary screens 8.1

The Diagnostic Summary screens are at the top of the menu system, alternating approximately every five seconds. Press the **RIGHT** key to view the ENTRY MENU.

Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key.

The linear parameters are integer %.

NOTE: The two Diagnostic Summary screens alternate approximately every five seconds.

However, this stops when the drive is left with ENABLE GOTO, GETFROM set to ENABLED. The drive cannot be run in this state and **mode** (above) displays **CONF** to indicate this. To run the drive, set ENABLE GOTO, GETFROM to DISABLED. Refer to Page 77.

The screens represent the following parameters:

SPD%	131)SPEED FBK MON	Monitor the value of the speed feedback as a % of full scale.
Iarm	134)ARM CUR % MON	Monitor the value of the average DC armature current, expressed as a percentage.
I4d	144)FIELD CUR % MON	Monitor the value of the average DC field current, expressed as a percentage.
RJSC	164)DOP 123TRJSC CIP	Monitor the digital logic level for (DOP1 to 3 and Therm - not shown here), R un, J og, S tart, C stop

Snef	124)SPEED DEMAND MON	Monitor the % value of the total speed demand after the STOP RAMP BLOCK.
Ilim	138)ACTUAL UPPER LIM	Monitor the % value of the prevailing upper limit in the current clamp block.
-Ilim	139)ACTUAL LOWER LIM	Monitor the % value of the prevailing lower limit in the current clamp block.
Mode	167)DRIVE RUN FLAG	Monitor if a command to RUN has been issued to the current loop.

74 How to use the keypad

8.2 **Keypad functions**

Use the PL/X keypad to navigate through the menus and change parameter settings.

Press a key by tapping it quickly (use your fingertip for more accurate results). Hold the key down to advance rapidly to a distant selection or value.

Also, you can use the keypad to load a Drive Personality. The NORMAL page is pre-loaded from the factory. Refer to "17.19 CONFIGURATION / DRIVE PERSONALITY" on page 363.

9 About the Menu System

The menu system forms a tree-like structure, divided into four levels, with two Diagnostic Summary screens as the entry point to Level 1.

You can select to view the FULL menu system containing over 700 parameters arranged into blocks or a REDUCED menu system holding approximately 50 of the often-used adjustable parameters contained in their relevant blocks.

R Throughout the manual, (indicates parameters in the REDUCED menu system (note that these parameters also appear in the FULL menu system).

• FULL/REDUCED menu - refer to "15.1 DISPLAY FUNCTIONS" on page 241.

ENTRY MENU LEVEL 1 screen

This screen appears momentarily at start-up (just before the unit's self-test counter), and will appear if you press

the LEFT, UP and DOWN keys when already at the top of the menu structure, i.e. viewing the Diagnostic Summary screens. It reminds you to press the RIGHT key for entry to Menu Level 1.

HINT: While we mention pressing the LEFT key "at least five times (5xL) to display the Diagnostic Summary screens", in practice, you can continuously hold down the LEFT key from any point in the menu until the Level 1 screen is displayed. Release the key to display the Diagnostic Summary screens.

DIAGNOSTIC menu/parameter easy access

Many DIAGNOSTIC parameters have easy access to the next window. Tap the RIGHT key repeatedly until the end of the menu branch is displayed. For rapid access:

- Press the UP key to display the end of the menu branch for the menu/parameter above.
- Press the DOWN key to display the end of the menu branch for the menu/parameter below.

Configuring the drive 9.1

The PL/X menu system comprises both "hard-wired" blocks and blocks that can be rewired to create a user configuration.

Each block holds parameters.

Each parameter stores a value.

A parameter is identifiable by its PIN (Parameter Identification Number).

There are PIN tables at the back of this manual. Use the tables to find a parameter's location within the menu system, its parameter range, default setting and property.

When configuring the drive:

• You can change a parameter value, followed by a PARAMETER SAVE.

or

You can begin a Configuration session and, by connecting parameters of configurable blocks, pass the value of a source parameter to a target parameter to re-wire the block diagram. Follow this with a PARAMETER SAVE

Configuration using the HMI

To begin a Configuration session, you must set CONFIGURATION / ENABLE GOTO, GETEROM to ENABLED.

> ENABLE GOTO, GETFROM ENGRI ED

Attempting to make a connection without doing this will cause ENABLE GOTO, GETFROM to be displayed.

To end a Configuration session, you must set CONFIGURATION / ENABLE GOTO, GETEROM to **DISABLED**.

The PL/X now runs a "Conflict Checker" to warn of GOTO connection conflicts.

Refer to "17.1.1 CONFLICT HELP MENU" on page 323.

There are four methods of connecting parameters during a Configuration session using a configurable block's inputs and outputs:

GOTO	This is the output of a block. It can connect to any parameter, except the output from another block. It cannot connect directly to a GETFROM .
GET FROM	This is the input of a block. It can connect from any parameter. A block may also have an AUX GETFROM (which is a second GETFROM).
JUMPER	This is a virtual wire that connects two parameters using its own GOTO and GETFROM .
STAGING POST	This is a spare parameter which can be used to connect a GOTO to a GETFROM . Any other unused parameter can be used for the same purpose.

Using a combination of these methods, you can construct very simple to very complex systems.

- A parameter can only be written to by one GOTO.
- A GET FROM can only be read from one parameter.
- The same parameter can connect to multiple GET FROMs.

Write a value to a block (to perform some function on the value) and read the new value

Pass a value (unchanged) from a PIN to a different PIN

Pass a value (unchanged) from a Block to a different Block - the value can be viewed at the Staging Post (or unused PIN)

Figure 33 Configuring the PL/X

For a detailed explanation, refer to "17.2 CONFIGURATION" on page 324.

HINT: When viewing a GET FROM, get quick access to all available parameters by pressing the UP/DOWN keys. This shortcut also works for AUX GET FROMs and GOTOs.

To configure the PL/X, CONFIGURATION / ENABLE GOTO, GETFROM must be set to ENABLED.

Saving your changes 9.2

- · Changes made to parameters are effective immediately.
- To make configuration changes using the HMI, set ENABLE GOTO GETFROM to ENABLED. Configuration changes become effective when you set ENABLE GOTO, GETFROM to DISABLED. (When using a serially connected configuration tool, setting ENABLE **GOTO**, **GETFROM** to ENABLED prevents changes from being made).

Changes are not permanent until a **PARAMETER SAVE** is performed.

9.2.1 How to save parameters

- 1. Hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key.
- 2. Enter the sequence **R-U-R-U**.

Key	Action				
R					
U	Display the PARAMETER SAVE screen				
R		of KET TO CONTINUE			
U	Press the UP key to continue and save				

- Press the UP (U) key to perform a PARAMETER SAVE. 3.
- 4. When the save is **FINISHED**, hold down the **LEFT** key to display the Diagnostic Summary screens. Release the key.

You can change the write destination of the PARAMETER SAVE operation. Refer to "17.19.1 677)RECIPE PAGE" on page 363, which discusses four possible options:

- NORMAL RESET
- 2-KEY RESET
- 3-KEY RESET
- 4-KEY ROM RESET

Refer to "Figure 89 Recipe Page - functional diagram" on page 364.

9.2.2 Abandoning unwanted changes

Removing power from the PL/X before performing a **PARAMETER SAVE** will restore parameters and configuration settings to their previous condition.

Restoring parameters to default conditions 9.3

It might be beneficial to reset a unit to its default setup condition. For instance, if a trial configuration proves unworkable, starting anew may be considered easier.

The 4-KEY ROM RESET will restore the default connections and parameters (with a few convenient exceptions). Refer to "1.7.4.1 4-KEY RESET (to factory defaults)" on page 7.

400)BLOCK DISCONNECT 9.4

Connecting the GOTO of a block to 400>BLOCK DISCONNECT de-activates the block. Using any other PIN activates the block.

In the ENABLE GOTO, GETFROM menus, 400>BLOCK DISCONNECT is located approximately mid-way in any of the lists.

9.5 The menu tree structure

The QuickStart parameters and PARAMETER SAVE are highlighted in red.

SPD% Iarm Ifld RJSC 0 0 0 0000	Sref Ilim -Ilim 0 0 0	stop	ENTRY MENU LEVEL 1
CHANGE PARAMETERS 2	RUN MODE RAMPS	3	21)RAMP OP MONITOR
DIAGNOSTICS 2 MOTOR DRIVE ALARMS 2 SERIAL LINKS 2 DISPLAY FUNCTIONS 2 APPLICATION BLOCKS 2 CONFIGURATION 2 PARAMETER SAVE 2			22)FORWARD UP TIME 23)FORWARD DOWN TIME 24)REVERSE UP TIME 25)REVERSE DOWN TIME 26)RAMP INPUT 27)FORWARD MIN SPEED 28)REVERSE MIN SPEED 29)RAMP AUTO PRESET 30)RAMP EXT PRESET 31)RAMP PRESET VALUE 32)RAMP S-PROFILE % 33)RAMP HOLD 34)RAMPING THRESHOLD 35)RAMPING FLAG
	JOG CRAWL SLACK	3	37)JOG SPEED 1 38)JOG SPEED 2 39)SLACK SPEED 1 40)SLACK SPEED 2 41)CRAWL SPEED 42)JOG MODE SELECT 43)JOG/SLACK RAMP
	MOTORISED POT RAMP	3	45)MP OP MONITOR 46)MP UP TIME 47)MP DOWN TIME 48)MP UP COMMAND 49)MP DOWN COMMAND 50)MP MAX CLAMP 51)MP MIN CLAMP 52)MP PRESET 53)MP PRESET VALUE 54)MP MEMORY BOOT-UP
	STOP MODE RAMP	3	56)STOP RAMP TIME 57)STOP TIME LIMIT 58)LIVE DELAY MODE 59)DROP-OUT SPEED 60)DROP-OUT DELAY
	SPEED REF SUMMER	3	62)INT SPEED REF 1 63)SPEED REF 2 64)SPEED REF 3 MON 65)RAMPED SPD REF 4 66)SPD/CUR REF3 SIGN 67)SPD/CUR RF3 RATIO

About the Menu System

3	69)MAX POS SPEED REF 70)MAX NEG SPEED REF 71)SPEED PROP GAIN 72)SPEED INT T.C. 73)SPEED INT RESET SPEED PI ADAPTION	4		74)SPD ADPT LO BRPNT 75)SPD ADPT HI BRPNT 76)LO BRPNT IPRP GAIN 77)LO BRPNT INT T.C. 78)INT % DURING RAMP 9)SPD ADAPT ENABLE
3	81)CUR CLAMP SCALER CURRENT OVERLOAD	4	_	82)O/LOAD % TARGET 83)O/LOAD RAMP TIME
	I DYNAMIC PROFILE 88)DUAL I CLAMP ENBL 89)UPPER CUR CLAMP 90)LOWER CUR CLAMP 91)EXTRA CUR REF 92)AUTOTUNE ENABLE 93)CUR PROP GAIN 94)CUR INT GAIN 94)CUR INT GAIN 95)CUR DISCONTINUITY 96)4-QUADRANT MODE 97)SPD BYPASS CUR EN	4		84)I PROFILE ENABLE 85)SPD BRPNT AT HII 86)SPD BRPNT AT LO I 87)CUR LIMIT AT LO I
3	99)FIELD ENABLE 100)FIELD VOLTS OP % 101)FIELD PROP GAIN 102)FIELD INT GAIN FLD WEAKENING MENU 111)STANDBY FLD ENBL 112)STANDBY FLD CUR 113)FLD QUENCH DELAY 114)FIELD REFERENCE	14		103)FLD WEAK ENABLE 104)FLD WK PROP GAIN 105)FLD WK INT TC ms 106)FLD WK DRV TC ms 107)FLD WK FB DRV ms
3	115)STANDSTILL ENBL 116)ZERO REF START 117)ZERO INTLK SPD % 118)ZERO INTLK CUR % 119)AT ZERO REF FLAG 120)AT ZERO SPD FLAG 121)AT STANDSTILI			108)FLD WK FE INT ms 109)SPILLOVER AVF % 110)MIN FLD CURRENT
	SPINDLE ORIENTATE	4		122)ZERO SPEED LOCK 240)MARKER ENABLE
3	2)RATED ARM AMPS 3)CURRENT LIMIT(%) 4)RATED FIELD AMPS 5)BASE RATED RPM			241)MARKER OFFSET 242)POSITION REF 243)MARKER FREQ MON 244)IN POSITION FLAG
	6)DESIRED MAX RPM 7)ZERO SPD OFFSET 8)MAX TACHO VOLTS 9)SPEED FBK TYPE ENCODER SCALING 14)IR COMPENSATION 15)FIELD CUR FB TRIM 16)ARM VOLTS TRIM 17)ANALOG TACHO TRIM 18)RATED ARM VOLTS 19)EL1/2/3 RATED AC 20MO(TOR 12 SELECT	4		10)QUADRATURE ENABLE 11)ENCODER LINES 12)MOT/ENC SPD RATIO 13)ENCODER SIGN
	3 3 3 3	 a eogmax Pos SPEED REF 70)MAX NEG SPEED REF 70)MAX NEG SPEED REF 71)SPEED PROP GAIN 72)SPEED INT RESET SPEED PI ADAPTION a 81)CUR CLAMP SCALER CURRENT OVERLOAD b 81)CUR CLAMP SCALER 88)DUAL CLAMP ENBL 89)UPPER CUR CLAMP 90)LOWER CUR CLAMP 10)FIELD PROP GAIN 11)STANDSTILL ENBL 11)STANDSTILL ENBL 1	 69)MAX POS SPEED REF 70)MAX NEG SPEED REF 88)DUAL I CLAMP SCALER 88)DUAL I CLAMP ENBL 89)UPRER CUR CLAMP 90)LOWER CUR CLAMP 10)FELD VOLTS 0P% 10)FELD VOLTS 0P% 118)FELD INT GAIN 110)FELD OUELS OP% 118)FELD INT GAIN 110)FELD OUELS OP% 118)FECD REF FLAG 120AT ZERO SPD FLAG 120AT ZER	3 69)MAX POS SPEED REF 70)MAX NEG SPEED REF 71)SPEED PROP GAIN 72)SPEED INT T.C. 73)SPEED INT RESET SPEED PI ADAPTION 4 3 81)CUR CLAMP SCALER CURRENT OVERLOAD 4 8 SUDUAL I CLAMP SCALER 8 CURRENT OVERLOAD 9 I DYNAMIC PROFILE 4 88)DUAL I CLAMP ENBLL 89)UPPER CUR CLAMP 90)OWRE CUR CLAMP 90)LOWRE CUR CLAMP 91)EXTRA CUR REF 92)AUTOTONE ENABLE 93)CUR PROP GAIN 90)EXTRA CUR REF 90)DFIELD PROP GAIN 101FIELD PROP GAIN 102FIELD RAMENT IMITICAN 1113FANDSTILL ENBL 116/DERO REF START 117/J

CHANGE PARAMETERS 2

CHANGE PARAMETERS 2

DIAGNOSTICS	2		SPEED LOOP MONITOR 3	 123)TOTAL SPD REF MN
MOTOR DRIVE ALARMS SERIAL LINKS DISPLAY FUNCTIONS APPLICATION BLOCKS CONFIGURATION PARAMETER SAVE	2 2 2 2 2 2	•		1245/SPEED DEMAND MON 1255/SPEED ERROR MON 1265/SRE VOLTS MON 1275/SRM VOLTS % MON 128/JBACK EMF % MON 129/TACHO VOLTS MON 130/MOTOR RPM MON 132/ENCODER RPM MON 131/SPEED FBK MON
			ARM I LOOP MONITOR 3	133JARM CUR DEM MON 134JARM CUR % MON 136JUPPER CUR LIM MN 136JUOVER CUR LIM MN 138JACTUAL UPPER LIM 139JACTUAL LOWER LIM 140JO/LOAD LIMIT MON 141JAT CURRENT LIMIT
			FIELD I LOOP MONITOR 3	143)FIELD DEMAND MON 144)FIELD CUR % MON 145)FLD CUR AMPS MON 146)ANGLE OF ADVANCE 147)FIELD ACTIVE MON
			ANALOG IO MONITOR 3	 150JUIP2 (T2) MON 151JUIP3 (T3) MON 152JUIP4 (T4) MON 153JUIP5 (T5) MON 154JUIP5 (T6) MON 155JUIP7 (T7) MON 156JUIP8 (T8) MON 157JUIP9 (T9) MON
			DIGITAL IO MONITOR 3	162)UIP 23456789 163)DIP 12341234 DIO 164)DOP 123TRJSC CIP 165)HARM BRIDGE FLAG 165)HARM BRIDGE FLAG 167)DRIVE RUN FLAG 168)RUNNING MODE MON
			BLOCK OP MONITOR 3	21)RAMP OP MONITOR 45)MP OP MONITOR 1920REF XC MASTER MN 401)SUMMER1 OP MON 415)SUMMER2 OP MON 425)PIDI OP MONITOR 452)PIDI OP MONITOR 452)PIDI OP MONITOR 452)PIDI OP MONITOR 453)DIAMETER OP MON 483)DIAMETER OP MON 500)TORQUE DEMAND MN 500)TORQUE DEMAND MN 500)TAL TENSION MN 500)LATCH OUTPUT MON 568)FLITERI OP MON 573)FLITERI OP MON 573)FLITERI OP MON 573)FLITERI OP MON 573)FLITERI OP MON 573)FLITERI OP MON 573)FLITERI OP MON

SPD% Iarm Ifld (0 0 0 0	RJSC 0000	Sref Ilim -Ilin 0 0 0	n mode STO	ENTRY MENJ LEVEL 1
CHANGE PARAMETERS DIAGNOSTICS MOTOR DRIVE ALARMS SERIAL LINKS DISPLAY FUNCTIONS APPLICATION BLOCKS CONFIGURATION PARAMETER SAVE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	REDUCED MENU ENABLE PASSWORD CONTROL LANGUAGE SELECT SOFTWARE VERSION	3	ENTER PASSWORD ALTER PASSWORD
SPD% Iarm If1d 0 0 0 0 0 CHANGE PARAMETERS DIAGNOSTICS MOTOR DRIVE ALARMS SERIAL LINKS	RJSC 00000	Sref Ilim -Ilin 0 0 0	n mode STO	ENTRY MENJ LEVEL 1
DISPLAY FUNCTIONS APPLICATION BLOCKS CONFIGURATION	2 2 2	SUMMER 1 SUMMER 2	3 3	
PARAMETER SAVE	2	PID 2 PARAMETER PROFILER REEL DIAMETER CALC TAPER TENSION CALC TORQUE COMPENSATOR PRESET SPEED MULTI-FUNCTION 1 MULTI-FUNCTION 2 MULTI-FUNCTION 3 MULTI-FUNCTION 3 MULTI-FUNCTION 4 MULTI-FUNCTION 5 MULTI-FUNCTION 5 MULTI-FUNCTION 7 MULTI-FUNCTION 7 MULTI-FUNCTION 8 LATCH FILTER 1 FILTER 1 FILTER 2 BATCH COUNTER INTERVAL TIMER COMPARATOR 1 COMPARATOR 2 COMPARATOR 2 COMPARATOR 3 COMPARATOR 4 C/O SWITCH 1 C/O SWITCH 3	333333333333333333333333333333333333333	Refer to "16 The APPLICATION BLOCKS menu" on page 245

SPD% larm lfld 0 0 0	RJSC 0000	\bigcirc	Snef Ø	Ilim 0	-Ilim 0	mode STOP		ENTRY MENU	LEVEL 1	4	
CHANGE PARAMETERS DIAGNOSTICS MOTOR DRIVE ALARMS SERIAL LINKS DISPLAY FUNCTIONS APPLICATION BLOCKS	2 2 2 2 2 2 2										
CONFIGURATION	2	-1	ENABLE (GOTO,GE	TFROM						
PARAMETER SAVE	ARAMETER SAVE 2		UNIVERS	ERSAL INPU	JTS 3	3	-	UIP2 (T2) SETUP	4		320)UIP2 IP RANGE 321)UIP2 IP OFFSET 322)UIP2 CAL RATIO 323)UIP2 MAX CLAMP 324)UIP2 MIN CLAMP UIP ANALOG GOTO UIP DIGTAL OP1 GOTO UIP DIGTAL OP1 GOTO 325)UIP2 HI VAL OP1 325)UIP2 HI VAL OP1 325)UIP2 LO VAL OP2 322)UIP2 HI VAL OP2
								UIP3 (T3) SETUP	4	H	329JUIP2 THRESHOLD 330JUIP3 IP RANGE 331JUIP3 IP OFFSET 332JUIP3 CAL BATIO
											332JUIP3 CAL KAILO 333JUIP3 MAX CLAMP UIP ANALOG GOTO UIP DIGITAL OPI GOTO UIP DIGITAL OPI GOTO 333JUIP3 HI VAL OP1 335JUIP3 HI VAL OP1 333JUIP3 HI VAL OP2 338JUIP3 LO VAL OP2 339JUIP3 THRESHOLD
								UIP4 (T4) SETUP	4		340/UIP4 IP RANGE 341/UIP4 IP OFFSET 343/UIP4 ALR RATIO 343/UIP4 MIN CLAMP 343/UIP4 MIN CLAMP UIP ANALOG GOTO UIP DIGTAL OP1 GOTO UIP DIGTAL OP2 GOTO 345/UIP4 HI VAL OP1 346/UIP4 HI VAL OP1 346/UIP4 HI VAL OP2 349/UIP4 HI VAL OP2 349/UIP4 HI VAL OP2 349/UIP4 HI VAL OP2
								UIP5 (T5) SETUP	4		350JUIPS IP RANGE 351JUIPS CAL RATIO 353JUIPS CAL RATIO 353JUIPS MAX CLAMP 354JUIPS MIN CLAMP UIP ANALOG GOTO UIP DIGITAL OP1 GOTO UIP DIGITAL OP2 GOTO 355JUIPS HI VAL OP1 355JUIPS HI VAL OP1 355JUIPS HI VAL OP2
											358)UIP5 LO VAL OP2 359)UIP5 THRESHOLD

85 About the Menu System

CONFIGURATION 2	UNIVERSAL INPUTS 3	UIP6 (T6) SETUP	4 360)UIP6 IP RANGE 361)UIP6 IP OFFSET 362)UIP6 CAL RATIO 363)UIP6 MAX CLAMP 364)UIP6 MIN CLAMP UIP ANALOG GOTO UIP DIGITAL OP1 GOTO UIP DIGITAL OP1 GOTO UIP DIGITAL OP2 GOTO 365)UIP6 HI VAL OP1 366)UIP6 HI VAL OP2 368)UIP6 LO VAL OP2 369)UIP6 THRESHOLD
		UIP7 (T7) SETUP	4 370)UIP7 IP RANGE 371)UIP7 IP OFFSET 372)UIP7 CAL RATIO 373)UIP7 MAX CLAMP 374)UIP7 MIN CLAMP UIP ANALOG GOTO UIP DIGITAL OP1 GOTO UIP DIGITAL OP1 GOTO UIP DIGITAL OP1 GOTO 375)UIP7 HI VAL OP1 376)UIP7 HI VAL OP2 378)UIP7 LO VAL OP2 379)UIP7 THRESHOLD
		UIP8 (T8) SETUP	4 380)UIP8 IP RANGE 381)UIP8 IP OFFSET 382)UIP8 CAL RATIO 383)UIP8 MAX CLAMP 384)UIP8 MIN CLAMP UIP ANALOG GOTO UIP DIGITAL OP1 GOTO UIP DIGITAL OP2 GOTO 385)UIP8 HI VAL OP1 386)UIP8 LO VAL OP1 387)UIP8 HI VAL OP2 388)UIP8 LO VAL OP2 388)UIP8 THRESHOLD
		UIP9 (T9) SETUP	4 390)UIP9 IP RANGE 391)UIP9 IP OFFSET 392)UIP9 CAL RATIO 393)UIP9 MAX CLAMP 394)UIP9 MIN CLAMP UIP ANALOG GOTO UIP DIGITAL OP1 GOTO UIP DIGITAL OP2 GOTO 395)UIP9 HI VAL OP2 396)UIP9 HI VAL OP2 398)UIP9 LO VAL OP2 399)UIP9 THRESHOLD

CONFIGURATION 2

ANALOG OUTPUTS	3	250)Iarm OP RECTIFY		
		AOP1 (T10) SETUP	4	251)AOP1 DIVIDER 252)AOP1 OFFSET 253)AOP1 RECTIFY EN GET FROM
		AOP2 (T11) SETUP	4	254)AOP2 DIVIDER 255)AOP2 OFFSET 256)AOP2 RECTIFY EN GET FROM
		AOP3 (T12) SETUP	4	257)AOP3 DIVIDER 258)AOP3 OFFSET 259)AOP3 RECTIFY EN GET FROM
		260)SCOPE OP SELECT		
DIGITAL INPUTS	3	DIP1 (T14) SETUP	4	310)DIP1 IP HI VALUE 311)DIP1 IP LO VALUE GOTO
		DIP2 (T15) SETUP	4	312)DIP2 IP HI VALUE 313)DIP2 IP LO VALUE GOTO
		DIP3 (T16) SETUP	4	314)DIP3 IP HI VALUE 315)DIP3 IP LO VALUE GOTO
		DIP4 (T17) SETUP	4	316)DIP4 IP HI VALUE 317)DIP4 IP LO VALUE GOTO
		RUN INPUT SETUP	4	318)RUN IP HI VALUE
				319)RUN IP LO VALUE GOTO

CONFIGURATION	2	DIGITAL IN/OUTPUTS 3	DIO1 (T18) SETUP	4	271)DIO1 OP MODE 272)DIO1 RECTIFY EN 273)DIO1 THRESHOLD 274)DIO1 INVERT MODE GET FROM GOTO 275)DIO1 IP HI VALUE 276)DIO1 IP LO VALUE
			DIO2 (T19) SETUP	4	277)DIO2 OP MODE 278)DIO2 RECTIFY EN 279)DIO2 THRESHOLD 280)DIO2 INVERT MODE GET FROM GOTO 281)DIO2 IP HI VALUE 282)DIO2 IP LO VALUE
			DIO3 (T20) SETUP	4	283)DIO3 OP MODE 284)DIO3 RECTIFY EN 285)DIO3 THRESHOLD 286)DIO3 INVERT MODE GET FROM GOTO 287)DIO3 IP HI VALUE 288)DIO3 IP LO VALUE
			DIO4 (T21) SETUP	4	289)DIO4 OP MODE 290)DIO4 RECTIFY EN 291)DIO4 THRESHOLD 292)DIO4 INVERT MODE GET FROM GOTO 293)DIO4 IP HI VALUE 294)DIO4 IP LO VALUE

DIGITAL OUTPUTS	3	DOP1 (T22) SETUP	4	261)DOP1 RECTIFY EN 262)DOP1 THRESHOLD 263)DOP1 INVERT MODE GET FROM
		DOP2 (T23) SETUP	4	 264)DOP2 RECTIFY EN 265)DOP2 THRESHOLD 266)DOP2 INVERT MODE GET FROM
		DOP3 (T24) SETUP	4	267)DOP3 RECTIFY EN
				268)DOP3 THRESHOLD
STAGING POSTS	3	296)DIGITAL POST 1		269)DOP3 INVERT MODE
		297)DIGITAL POST 2		GET FROM
		298)DIGITAL POST 3		
		299)DIGITAL POST 4		
		300)ANALOG POST 1		
		302)ANALOG POST 3		
		303)ANALOG POST 4		
SOFTWARE TERMINALS	3	305)ANDED RUN		
		306)ANDED JOG		
		207 ANDED CTART		
		307)ANDED START		
		307)ANDED START 308)INTERNAL RUN IP		
JUMPER CONNECTION	53	307)ANDED START 308)INTERNAL RUN IP	4	GET FROM
JUMPER CONNECTIONS	53	307JANDED START 308)INTERNAL RUN IP JUMPER 1 JUMPER 16	4	GET FROM GOTO
JUMPER CONNECTIONS	3	307)ANDED START 308)INTERNAL RUN IP JUMPER 1 JUMPER 16 RUN MODE RAMPS GOT MOTORISED POT GOTO REF EXCH SLAVE GOTO SUMMER1 GOTO PID1 GOTO PID2 GOTO PARAMETER PROFL GOTO TAPER CALC GOTO T/COMP -CUR LIM GOTO T/COMP -CUR LIM GOTO FILTER2 GOTO BATCH COUNTER GOTO BATCH COUNTER GOTO	4 0 0	GET FROM GOTO
JUMPER CONNECTIONS	3	307)ANDED START 308)INTERNAL RUN IP JUMPER 1 JUMPER 16 RUN MODE RAMPS GOT MOTORISED POT GOTO REF EXCH SLAVE GOTO SUMMER1 GOTO PID1 GOTO PID2 GOTO PID2 GOTO PARAMETER PROFL GOTO TAPER CALC GOTO TAPER CALC GOTO T/COMP -CUR LIM GOTO PRESET SPEED GOTO LATCH GOTO FILTER2 GOTO BATCH COUNTER GOTO INTERVAL TIMER GOTO	4 4 0	GET FROM GOTO

CONFIGURATION 2

CONFIGURATION	2	FIELDBUS CONFIG	3	JUMPER 1	4	GET FROM
				JUMPER 2	4	
				BIT-PACKED GETFROM	4	GOTO
				JUMPER 16 BIT-PACKED GOTO	4	
				199)FBUS DATA CONTRO	DL	
				202)FBUS NODE ID 224)FBUS BAUD RATE		
			2			Refer to "17.20 CONFIGURATION/DRIVE
		DRIVE PERSONALITY	3	677)RECIPE PAGE	4	 PERSONALITY/PASSIVE MOTOR SET" on page
				678)MAX CUR RESPONS	E	371.
				680)Iarm BURDEN OHM	IS	
		CONFLICT HELP MENU	3	NUMBER OF CONFLICTS	5	
				MULTIPLE GOTO ON PIN	1	
SPD% larm lfld R 0 0 0 0		Sref Ilim -Ilin 0 0 0	m mode STOP	ENTRY MENU LEVEL	1	R
						U
CHANGE PARAMETERS	2					
DIAGNOSTICS	2					
MOTOR DRIVE ALARMS	2					
SERIAL LINKS	2					
DISPLAY FUNCTIONS	2					
APPLICATION BLOCKS	2					
	2					
FARAIVETER SAVE	-	OF KEY TO CONTINUE				

10 Technical specifications

10.1 General information

	General inf	ormation					
Ingress Protection	IP00. This product is classified as a component and must be used in a suitable enclosure.						
Control circuits	Fully isolated from power circuit.						
Control action	Advanced PI with fully adaptive performance.	current loops for optimum dynamic					
	Self-tuning current loop using "	Autotune" algorithm.					
	Adjustable speed PI with integr	al defeat.					
Speed	By armature voltage feedback v	vith IR compensation.					
control	By encoder feedback or analog	tachogenerator feedback.					
	By a combination of encoder feedback and analog tachogenerator feedback or armature voltage feedback.						
Steady-state	0.1% analog tachogenerator feedback (subject to tachogenerator)						
accuracy	2% armature voltage feedback						
	0.01% Encoder only, Encoder + tacho, encoder + armature voltage feedback (with digital reference)						
Protection	Armature overvolts Bad reference exchange Contactor lock out Field failure Field overcurrent High energy MOV'S Interline device networks Motor over-temperature Overcurrent (instantaneous) Overload 150% for 25s Overspeed Short circuit on digital outputs	Speed feedback mismatch Stall protection Stall trip Standstill logic Supply loss Synchronisation loss Tacho failure (with auto AVF backup option) Thyristor "Trigger" failure Thyristor Stack over-temperature User alarm Zero-speed detection					
Field output	Constant current, constant volta	age, automatic weakening.					
modes	Delayed quenching after stop c	ommand to allow dynamic braking.					
	Standby mode to leave field exe	tited at low level to prevent motor cooling.					
	Field supply inputs independen	t from armature supply inputs.					
	Current controlled with voltage limit, automatic field weakening	limit or voltage controlled with current g.					

	General inf	ormation				
Diagnostics	With first fault latch, automatic	display and power off memory.				
	Diagnostic monitoring of all parameters in engineering and/or % units.					
	Full diagnostic information avai additional hardware) when usin software graphical tool.	lable over RS232 or ethernet (with g a distributed control systems (DCS)				
	Digital I/O logic status plus auto displays.	matic default % diagnostic summary				
Temperature	0-40°C ambient operating temp	erature (35ºC for PL/X900 and PL/X980).				
	Derate by 1% per °C above 40°C	up to 50°C maximum.				
	Storage 5-55°C.					
	Protect from direct sunlight. En	sure dry, corrosive free environment.				
Humidity	85% Relative humidity maximum.					
	Note: - Relative humidity is temperature dependent, do not allow condensation.					
Atmosphere	Non-flammable, non-condensing. Pollution Degree: 2. Installation Cat: 3.					
Altitude	Derate by 1% per 100 metres above 1000 metres.					
Short-circuit rating	Suitable for use on a circuit capable of delivering not more than 5000 A PL/X5-30; 10000 A PL/X40-145; 18000 A PL/X185-275; 30000A PL/X315-400; 42000A PL/X440-600; 85000A PL/X700-980.					
	Refer to "10.4 Short-circuit ration	ngs" on page 95.				
Special features	Motorised pot simulator Connection Conflict Checker Dual motor swap	Spindle orientation 3 Total Instrument Recipe pages PC configuration and monitoring tool				
Application blocks	Centre winding 2 Summers Batch counter Latch 8 Multi-function Preset Speed	2 PIDs Parameter profiler 4 Comparators 4 Changeover switches Delay timer Filters 16-bit demultiplexer				
Serial comms	RS232 port ANSI-X3.28-2.5-B I multi-drop	Fieldbus options				

10.2 Product rating labels

Product rating labels and any applicable product standard labels are on the side of the drive. We use the unique product serial number to identify the drive's model type and power ratings.

10.3 Electrical ratings

- The motor output power rating is based on the power output of the drive and a motor efficiency of 90%: Va*Ia*0.9.
- The output power available will depend on the actual efficiency of the motor.
- The Models PL/X 900/980 have a maximum ambient temperature rating of 35°C. Derate by 100 Amps for use at 40°C.

Model			Maximum continuous shaft ratings						
PL 2-quadrant		Maximum	n continuous c	urrent (A)	Output	power	Losses @ full load*		
PLX 4-quadrant		Output DC	Input AC	100% Field Amps	kW at 460 V	hp at 500 V	W		
PL and PLX	5	12	10	8	5	7.5	36		
PL and PLX	10	24	20	8	10	15	72		
PL and PLX	15	36	30	8	15	20	108		
PL and PLX	20	51	40	8	20	30	153		
PL and PLX	30	72	60	8	30	40	216		
PL and PLX	40	99	80	8	40	60	297		
PL and PLX	50	123	100	8	50	75	369		

10.3.1 Frame 1 - PL/X 5-50

High-power field output option available at extra cost. Specify at the time of order - contact Sprint-Electric.

*Losses are calculated using the equation: Loss = 3 x Rated Output Current. Loss figures do not include the field bridge losses which can also be up to 3 X actual field current.

10.3.2 Frame 2 - PL/X 65-145

Model		Maximum continuous shaft ratings						
PL 2-quadrant		Maxim	um continuous cur	Output power				
PLX 4-quadrant		Output DC	Input AC	100% Field Amps	kW at 460 V	hp at 500 V		
PL and PLX	65	155	124	16	65	100		
PL and PLX	85	205	164	16	85	125		
PL and PLX	115	270	216	16	115	160		
PL and PLX	145	330	270	16	145	200		

High-power field output option available at extra cost. Specify at the time of order - contact Sprint-Electric.

10.3.3 Frame 3 - PL/X 185-265

Model		Maximum continuous shaft ratings						
PL 2-quadran	t	Maximi	um continuous cui	rrent (A)	Output power			
PLX 4-quadran	it	Output DC	Input AC	100% Field Amps	kW at 460 V	hp at 500 V		
PL and PLX	185	430	350	32	185	270		
PL and PLX	225	530	435	32	225	330		
PL and PLX	265	630	520	32	265	400		

High-power field output option available at extra cost. Specify at the time of order - contact Sprint-Electric.

10.3.4 Frame 4 - PL/X 275-440

Model		Nominal maximum continuous shaft ratings						
PL 2-quadrant		Maximur	n continuous c	urrent (A)		Output power		
PLX 4-quadrant					380-415 Vac	480 Vac	690 Vac	
		Output DC	Input AC	100% Field Amps	kW at 460 V	hp at 500 V	hp at 750 V HV models	
PL and PLX	275	650	530	32	275	400	600	
PL and PLX	315	750	615	32	315	460	690	
PL and PLX	360	850	700	32	360	520	780	
PL and PLX	400	950	780	32	400	580	875	
PL* and PLX*	440	1050	860	32	440	640	970	

600 Vac and 690 Vac variants available at extra cost. Specify at the time of order -suffix MV or HV. Suffix BE for bottom entry 3-phase power; suffix TE for top entry 3-phase power. Example order codes: PLX275BE, PLX520TEHV

* Model has no overload capability.

10.3.5 Frame 5 - PL/X 520-980

Model			Nomin	al maximum co	naximum continuous shaft ratings					
PL 2-quadrant		Maximur	n continuous cı	urrent (A)		Autom 690 Vac 480 Vac 690 Vac hp at 500 V hp at 750 V HV models 760 1140				
PLX 4-quadrant					380-415 Vac	480 Vac	690 Vac			
		Output DC	Input AC	100% Field Amps	kW at 460 V	hp at 500 V	hp at 750 V HV models			
PL and PLX	520	1250	1025	64	520	760	1140			
PL and PLX	600	1450	1190	64	600	880	1320			
PL and PLX	700	1650	1350	64	700	1020	1530			
PL and PLX	800	1850	1520	64	800	1170	1760			
PL and PLX	900	2050	1680	64	900	1300	1950			
PL* and PLX*	980	2250	1845	64	980	1430	2145			

600 Vac and 690 Vac variants available at extra cost. Specify at the time of order -suffix MV or HV. Suffix BE for bottom entry 3-phase power; suffix TE for top entry 3-phase power. Example order codes: PLX275BE, PLX520TEHV

* Model has no overload capability.

10.4 Short-circuit ratings

These products are suitable for use on a circuit capable of delivering not more than the short circuit ratings given below at 480Vac maximum when used with Semiconductor Fuses Classes aR, gR or gS. Short Circuit Values are based on UL508C Table 45.1 (products are pre February 1st 2020 - UL 61800-5-1).

Output Ratings	460 Vdc	500 Vdc	RMS Symmetrical Amps
Amps	kW	НР	Short Circuit Rating
12	5	7.5	5,000
24	10	15	5,000
36	15	20	5,000
51	20	30	5,000
72	30	40	5,000
99	40	60	10,000
123	50	75	10,000
155	65	100	10,000
205	85	125	10,000
270	115	160	10,000
330	145	200	10,000
430	185	270	18,000
530	225	330	18,000
630	265	400	18,000
650	275	400	18,000
750	315	460	30,000
850	360	520	30,000
950	400	580	30,000
1050	440	640	42,000
1250	520	760	42,000
1450	600	880	42,000
1650	700	1020	85,000
1850	800	1170	85,000
2050	900	1300	85,000
2250	980	1430	85,000

10.5 Fuses

- Use only UL Recognised fuses in all installations.
- All fuses intended to protect the Semiconductors must be type aR or gS(gR).
 - **DO NOT** use type aR fuses for branch protection as they provide no overload protection. Type aR fuses are for Semiconductor protection only.
 - Type gS(gR) are Semiconductor fuses with overload limiting capability, type gS having a lower power loss than a gR. They have a lower power dissipation than aR fuses.

10.5.1 Semiconductor fuse ratings

WARNING! PERSONAL INIURY AND/OR EQUIPMENT DAMAGE HAZARD

PROTECT ALL DRIVES BY USING CORRECTLY RATED SEMICONDUCTOR FUSES. Failure to do so will invalidate the Warranty.

In general, the input AC supply current per phase is 0.82 x the DC output current, and the fuse rating should be approximately 1.25 x the AC input current.

The fuses specified in the tables are rated:

- to include the 150% overload capability
- to operate at up to 50°C ambient
- for the maximum drive rating.

To select a fuse when using the drive at less than the drive rating (for example, when using a motor rated at lower current than the PL/X or operating at a reduced maximum current limit setting), choose a fuse with a current rating closest to the armature current and with an I²t rating less than the maximum shown in the table.

The table below gives the maximum typical operating voltage for various time constants (inductance/resistance).

Maximum working DC voltage	Maximum allowable time constant
500	10 ms
450	20 ms
400	30 ms
380	40 ms
360	50 ms

Please refer to the fuse manufacturer's data for further information.

	Output		MAIN	FUSES		AUX FUSES]
Model	DC Amps	I²t [A²s]	Part No.	Holders	Size	I²t [A²s]	Part No.	Holders	Size	AC Fuse Kit *
PL/PLX5	12	90	CH01612A	CP105004‡	10*38	55	CH01610A	CP105004‡	10*38	ACFUSEKIT-PL/X5
PL/PLX10	24	500	CH00730A	CP102053‡	14*51	55	CH01610A	CP105004‡	10*38	ACFUSEKIT-PL/X10
PL/PLX15	36	750	CH00740A	CP102053‡	14*51	55	CH01610A	CP105004‡	10*38	ACFUSEKIT-PL/X15
PL/PLX20	51	770	CH00850A	CP105503#	000	55	CH01610A	CP105004‡	10*38	ACFUSEKIT-PL/X20
PL/PLX30	72	2550	CH00880A	CP105503#	000	55	CH01610A	CP105004‡	10*38	ACFUSEKIT-PL/X30
PL/PLX40	99	4650	CH008100	CP105503#	000	55	CH01610A	CP105004‡	10*38	ACFUSEKIT-PL/X40
PL/PLX50	123	8500	CH008125	CP105503#	000	55	CH01610A	CP105004‡	10*38	ACFUSEKIT-PL/X50
PL/PLX65	155	16000	CH008160	CP105503#	000	245	CH01620A	CP105004‡	10*38	ACFUSEKIT-PL/X65
PL/PLX85	205	28500	CH009250	CP105507#	1	245	CH01620A	CP105004‡	10*38	ACFUSEKIT-PL/X85
PL/PLX115	270	28500	CH009250	CP105507#	1	245	CH01620A	CP105004‡	10*38	ACFUSEKIT-PL/X115
PL/PLX145	330	135000	CH010550	CP105509#	3	245	CH01620A	CP105004‡	10*38	ACFUSEKIT-PL/X145
PL/PLX185	430	135000	CH010550	CP105509#	3	750	CH00740A	CP102053‡	14*51	ACFUSEKIT-PL/X185
PL/PLX225	530	135000	CH010550	CP105509#	3	750	CH00740A	CP102053‡	14*51	ACFUSEKIT-PL/X225
PL265	630	300000	CH010700	CP105509#	3	750	CH00740A	CP102053‡	14*51	ACFUSEKIT-PL265
				Fuse Assy						
PL/PLX275	650	210k	CH014K63	CH103301	33	770	CH00850A	CP105503#	000	ACFUSEKIT-PL/X275
PL/PLX315	750	300k	CH014K70	CH103302	33	770	CH00850A	CP105503#	000	ACFUSEKIT-PL/X315
PL/PLX360	850	490k	CH014K80	CH103303	33	770	CH00850A	CP105503#	000	ACFUSEKIT-PL/X360
PL/PLX400	950	700k	CH014K90	CH103304	33	770	CH00850A	CP105503#	000	ACFUSEKIT-PL/X400
PL/PLX440	1050	900k	СН0141К0	CH103305	33	770	CH00850A	CP105503#	000	ACFUSEKIT-PL/X440
PL/PLX520	1250	1260k	CH0141K1	CH103306	33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X520
PL/PLX600	1450	1850k	CH0141K25	CH103307	33	4650	СН008100	CP105503#	000	ACFUSEKIT-PL/X600
PL/PLX700	1650	2500k	CH0141K4	CH103308	33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X700
PL/PLX800	1850	1900k	2*CH014K80	CH103309	33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X800
PL/PLX900	2050	2800k	2*CH014K90	СН103310	33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X900
PL/PLX980	2250	3100k	2*CH0141K0	CH103467	33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X980

10.5.2 500 V: main and auxiliary fuses

‡ 1 Pole Fuse Holder # 3 Pole Fuse Disconnector

* The AC Fuse Kit contains the Main AC Fuses and Auxiliary Fuses complete with disconnectors.

10.5.3 500 V: DC fuses

We recommend fitting a DC-side semiconductor fuse to PL/X units used in applications where regeneration occurs most or all of the time to add increased protection against an unsequenced power loss during regeneration.

	Output	DC FUSES					
Model	DC Amps	I²t [A²s]	Part No.	Holders	Size		
PL/PLX5	12	48	CH00816A	CP105504#	00		
PL/PLX10	24	270	CH00832A	CP105504#	00		
PL/PLX15	36	270	CH00940A	CP105506#	1		
PL/PLX20	51	770	CH00963A	CP105506#	1		
PL/PLX30	72	1250	CH00980A	CP105506#	1		
PL/PLX40	99	3700	CH009125	CP105506#	1		
PL/PLX50	123	7500	CH009160	CP105506#	1		
PL/PLX65	155	15000	CH009200	CP105506#	1		
PL/PLX85	205	28500	CH009250	CP105506#	1		
PL/PLX115	270	46500	CH009315	CP105506#	1		
PL/PLX145	330	105000	CH009400	CP105506#	1		
PL/PLX185	430	145000	CH013500	CP102949‡	2		
PL/PLX225	530	190000	CH013550	CP102949‡	2		
PL265	630	-	-	-	-		
				Fuse Assy			
PL/PLX275	650	490k	CH014K80	CH103303	33		
PL/PLX315	750	700k	CH014K90	CH103304	33		
PL/PLX360	850	900k	CH0141K0	CH103305	33		
PL/PLX400	950	1260k	CH0141K1	CH103306	33		
PL/PLX440	1050	1850k	CH0141K25	CH103307	33		
PL/PLX520	1250	2500k	CH0141K4	CH103308	33		
PL/PLX600	1450	1900k	2*CH014K80	CH103309	2*33		
PL/PLX700	1650	2800k	2*CH014K90	CH103310	2*33		
PL/PLX800	1850	3100k	2*CH0141K0	CH103467	2*33		
PL/PLX900	2050	4400k	2*CH0141K1	CH103330	2*33		
PL/PLX980	2250	6600k	2*CH0141K25	CH103469	2*33		

3 Pole Fuse Disconnector ‡ 1 Pole Fuse Holder

These DC fuses are specified for operation up to 500 Vdc for armature circuit time constants up to 10 ms.

DC fuses are not required for non-regenerative (2Q) models

10.5.4 600/690 V: main and auxiliary fuses

	Output	MAIN FUSES				AUX FUSES				
Model PL	DC Amps	I²t [A²s]	Part No.	Fuse Assembly	Size	I²t [A²s]	Part No.	Holders	Size	AC Fuse Kit *
PL275MV/HV	650	210k	CH014K63	CH103301	33	770	CH00850A	CP105503#	000	ACFUSEKIT-PL/X275
PL315MV/HV	750	300k	CH014K70	CH103302	33	770	CH00850A	CP105503#	000	ACFUSEKIT-PL/X315
PL360MV/HV	850	490k	CH014K80	CH103303	33	770	CH00850A	CP105503#	000	ACFUSEKIT-PL/X360
PL400MV/HV	950	700k	CH014K90	CH103304	33	770	CH00850A	CP105503#	000	ACFUSEKIT-PL/X400
PL440MV/HV	1050	900k	CH0141K0	CH103305	33	770	CH00850A	CP105503#	000	ACFUSEKIT-PL/X440
PL520MV/HV	1250	1260k	CH0141K1	CH103306	33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X520
PL600MV/HV	1450	1850k	CH0141K25	CH103307	33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X600
PL700MV/HV	1650	2500k	CH0141K4	CH103308	33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X700
PL800MV/HV	1850	1900k	2*CH014K80	CH103309	2*33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X800
PL900MV/HV	2050	2800k	2*CH014K90	CH103310	2*33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X900
PL980MV/HV	2250	3100k	2*CH0141K0	CH103467	2*33	4650	CH008100	CP105503#	000	ACFUSEKIT-PL/X980
Model PLX										
PLX275MV/HV	650	485k	CH015K63	CH103341	73	770	CH00850A	CP105503#	000	-
PLX315MV/HV	750	640k	СН015К70	CH103342	73	770	CH00850A	CP105503#	000	-
PLX360MV/HV	850	1090k	СН015К80	CH103343	73	770	CH00850A	CP105503#	000	-
PLX400MV/HV	950	1440k	СН015К90	CH103344	73	770	CH00850A	CP105503#	000	-
PLX440MV/HV	1050	2130k	CH0151K0	CH103345	73	770	CH00850A	CP105503#	000	-
PLX520MV/HV	1250	2430k	CH0151K1	CH103346	73	4650	CH008100	CP105503#	000	-
PLX600MV/HV	1450	3080k	CH0151K25	CH103347	73	4650	CH008100	CP105503#	000	-
PLX700MV/HV	1650	4100k	CH0151K4	CH103348	73	4650	CH008100	CP105503#	000	-
PLX800MV/HV	1850	4400k	2*CH015K80	CH103349	2*73	4650	CH008100	CP105503#	000	-
PLX900MV/HV	2050	5800k	2*CH015K90	CH103350	2*73	4650	CH008100	CP105503#	000	-
PLX980MV/HV	2250	8500k	2*CH0151K0	CH103471	2*73	4650	CH008100	CP105503#	000	-

3 Pole Fuse Disconnector

* The AC Fuse Kit contains the Main AC Fuses and Auxiliary Fuses complete with disconnectors/holders.

10.5.5 600/690 V: DC fuses

We recommend fitting a DC-side semiconductor fuse to PL/X units used in applications where regeneration occurs most or all of the time to add increased protection against an unsequenced power loss during regeneration.

	Output	DC FUSES					
Model PL	DC Amps	I²t [A²s]	Part No.	Holder	Size		
PL275MV/HV	650	-	-	-	-		
PL315MV/HV	750	-	-	-	-		
PL360MV/HV	850	-	-	-	-		
PL400MV/HV	950	-	-	-	-		
PL440MV/HV	1050	-	-	-	-		
PL520MV/HV	1250	-	-	-	-		
PL600MV/HV	1450	-	-	-	-		
PL700MV/HV	1650	-	-	-	-		
PL800MV/HV	1850	-	-	-	-		
PL900MV/HV	2050	-	-	-	-		
PL980MV/HV	2250	-	-	-	-		
Model PLX							
PLX275MV/HV	650	1090k	CH015K80	CH103343	73		
PLX315MV/HV	750	1440k	СН015К90	CH103344	73		
PLX360MV/HV	850	2130k	СН0151К0	CH103345	73		
PLX400MV/HV	950	2430k	CH0151K1	CH103346	73		
PLX440MV/HV	1050	3080k	CH0151K25	CH103347	73		
PLX520MV/HV	1250	4100k	CH0151K4	CH103348	73		
PLX600MV/HV	1450	4400k	2*CH015K80	CH103349	2*73		
PLX700MV/HV	1650	5800k	2*CH015K90	CH103350	2*73		
PLX800MV/HV	1850	8500k	2*CH0151K0	CH103351	2*73		
PLX900MV/HV	2050	9632k	2*CH0151K1	CH103360	2*73		
PLX980MV/HV	2250	12075k	2*CH0151K25	CH103472	2*73		

These fuses are specified for operation up to 500 Vdc for armature circuit time constants up to 10 ms.

DC fuses are not required for non-regenerative (2Q) models

10.5.6 Square body fuses for frames 4 and 5

We offer a range of Square Body Semiconductor Fuses for our high current DC drives, frames 4 and 5.

A frame 5 drive may require two parallel fuses depending on its supply current requirements.

It is important that these fuses are mounted correctly to ensure optimum performance.

10.5.6.1 Size 33 - 690 Vac - 74.5 mm x 74.5 mm x 50.6 mm - M12

Product	DC Output Current	AC Input Current	Main AC Fuse Rating	Fuse Provided	Armature Fuse Rating (1)	Fuse Provided (2)
PL/PLX275 - PL275HV	650	530	630	1 * 630	800	1 * 800
PL/PLX315 - PL315HV	750	615	700	1 * 700	900	1 * 900
PL/PLX360 - PL360HV	850	700	800	1 * 800	1000	1 * 1000
PL/PLX400 - PL400HV	950	780	900	1 * 900	1100	1 * 1100
PL/PLX440 - PL440HV	1050	860	1000	1 * 1000	1250	1 * 1250
PL/PLX520 - PL520HV	1250	1025	1100	1 * 1100	1400	1 * 1400
PL/PLX600 - PL600HV	1450	1190	1250	1 * 1250	1600	2 * 800
PL/PLX700 - PL700HV	1650	1350	1400	1 * 1400	1800	2 * 900
PL/PLX800 - PL800HV	1850	1520	1600	2 * 800	2000	2 * 1000
PL/PLX900 - PL900HV	2050	1680	1800	2 * 900	2200	2 * 1100
PL/PLX980 - PL980HV	2250	1845	2000	2 * 1000	2500	2 * 1250

10.5.6.2 Size 73 - 1300 Vac - 74.5 mm x 74.5 mm x 74 mm - M12

Product	DC Output Current	AC Input Current	Main AC Fuse Rating	Fuse Provided	Armature Fuse Rating (1)	Fuse Provided (2)
PLX275HV	650	530	630	1 * 630	800	1 * 800
PLX315HV	750	615	700	1 * 700	900	1 * 900
PLX360HV	850	700	800	1 * 800	1000	1 * 1000
PLX400HV	950	780	900	1 * 900	1100	1 * 1100
PLX440HV	1050	860	1000	1 * 1000	1250	1 * 1250
PLX520HV	1250	1025	1100	1 * 1100	1400	2 * 700
PLX600HV	1450	1190	1250	2 * 630	1600	2 * 800
PLX700HV	1650	1350	1400	2 * 700	1800	2 * 900
PLX800HV	1850	1520	1600	2 * 800	2000	2 * 1000
PLX900HV	2050	1680	1800	2 * 900	2200	2 * 1100
PLX980HV	2250	1845	2000	2 * 1000	2500	2 * 1250

Notes:

- 1. An armature fuse is not required for a PL Drive 2Q Drive.
- 2. Where two fuses are provided, take care to ensure they share the current equally.

10.5.6.3 Mounting square body semiconductor fuses

It is essential that the fuse body makes good contact with the copper busbar. Fit the fuses as shown below.

a. Preferred fixing method

- 1. Fit the M12 studs through the busbars (clearance hole required) and into the fuse. Tighten the stud using a suitable hex key to 15Nm.
- 2. *Apply a suitable conductive jointing compound to the face of the fuse.
- 3. Secure the busbar to the fuse using a nut, plain washer and spring washer. Tighten the nut to 46 Nm.

b. Alternative method using a fixing bolt

- 1. *Apply a suitable conductive jointing compound to the face of the fuse.
- 2. Ensure that the fixing bolt does not bottom-out in the fuse. Tighten the bolt to 46 Nm.

***Note**: Apply the conductive jointing compound between the fuse and the busbar to ensure a gas tight joint with improved electrical and thermal conductivity. We recommend Compound SCX13.

10.5.6.4 Parelleling semiconductor fuses - frame 5

Two semiconductor fuses of the same current rating must be used in parallel in the DC output or AC supply if the frame 5 DC drive has a current rating larger than 1850 Adc - 800 kW 2Q or 1450 Adc – 600 kW 4Q.

However, precautions must be taken to ensure that the two fuses share the load current equally:

Current path a.

It is important that the length of the current path is equal for both fuses otherwise the fuses will not share the current equally.

b. Cooling

Try to ensure that one fuse does not heat the other.

c. Mechanical stress

Provide allowance for minor length variations on the two fuses.

strain relief slot between fuses

10.6 Line reactors

Only use CSA/UL certified line reactors for installations complying with CSA/UL codes. These line reactors are not certified. Refer to supplier for certified alternatives and reactor dimensions.

10.6.2 Frames 1-3 - PL/X 5-265

Model PL 2-quadrant	Maxi contir curre	mum nuous nt (A)	Line Reactor type		
PLX 4-quadrant	Input AC	Output DC			
PL/X 5	10	12	LR48		
PL/X 10	20	24	LR48		
PL/X 15	30	36	LR48		
PL/X 20	40	51	LR48		
PL/X 30	60	72	LR120		
PL/X 40	80	99	LR120		
PL/X 50	100	123	LR120		
PL/X 65	124	155	LR330		
PL/X 85	164	205	LR330		
PL/X 115	216	270	LR330		
PL/X 145	270	330	LR330		
PL/X 185	350	430	LR530		
PL/X 225	435	530	LR530		
PL 265	520	630	LR650		

10.6.1 Frames 4-5 - PL/X 275-980

Model	Maximum		Line Reactor type				
PL 2-quadrant	curre	nt (A)	Line Reactor type				
PLX 4-quadrant	Input AC	Output DC	500 V AC supply	690 Vac supply			
PL/X275	530	650	LR650	LR650HV			
PL/X315	615	750	LR750	LR750HV			
PL/X360	700	850	LR850 LR850H				
PL/X400	780	950	LR950 LR950H				
PL/X440	860	1050	LR1050	LR1050HV			
PL/X520	1025	1250	LR1250	LR1250HV			
PL/X600	1190	1450	LR1450	LR1450HV			
PL/X700	1350	1650	LR1650	LR1650HV			
PL/X800	1520	1850	LR1850	LR1850HV			
PL/X900	1680	2050	LR2050	LR2050HV			
PL/X980	1845	2250	LR2250	LR2250HV			

10.7 Supply loss shutdown

PORT 1	Control supply, 1-phase.	Provides power for the internal control electronics.
PORT 2	EL1/2/3 Auxiliary supply, 3-phase.	Provides power for the field and is used for synchronisation.
PORT 3	L1/2/3 Main supply, 3-phase.	Provides power for the armature bridge.

The drive has three supply ports:

• The missing pulse detector recognises a loss of any line on PORT 3.

 The field loss (EL3), phase loss (EL1/2), or synchronisation loss (EL1/2) detectors recognise a loss of any line on PORT 2. NOTE: PORTS 2 and 3 are ultimately fed from the same supply, although via different fuses or step-up/down transformers. Hence a supply loss may simultaneously be recognised by PORT 2 and PORT 3.

Refer to "13.3 MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE" on page 234.

The unit recognises a loss on PORT 1 when below approximately 80 Vac.

10.7.1 Effects of supply loss or dips

The armature and field current will phase back to zero; the contactor control will deenergise; the drive permanently saves any valid trip message. Refer to "9.2 Saving your changes" on page 79.

If a control supply dip occurs, the message **INTERNAL ERROR CODE** × **SUPPLY PHASE LOSS** will appear on the PL/X display. Press the LEFT key to reset. (This message may be briefly visible when turning off the control supply).

Refer to "13.3 MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE" on page 234 / SUPPLY PHASE LOSS for details on ride-through times.

10.7.2 L1/2/3 AC supply level different to EL1/2/3

It is not unusual for the armature voltage and the field voltage of old motors, in particular, to be different enough to warrant supplying them with independent levels of AC voltage, e.g. low voltage field.

The PL/X has independent control bridges and supply inputs for the armature (L1/2/3) and field (EL1/2/3).

Usually, the L1/2/3 and EL1/2/3 ports originate from the same AC supply voltage. If the field voltage is lower than might usually be expected for the prevailing supply, then the control loop will phase back the output voltage accordingly.

However, when the difference becomes excessive, it may be preferable to feed the two power ports from different supply voltages. The reason for this is usually to prevent high peak voltages from being imposed on a winding where the supply voltage is much higher than the winding rating. Also, a winding designed to run at full voltage fully phased forward will be subjected to a worse form factor when run continuously phased right back, leading to overheating.

The wiring diagram below shows the preferred method of supplying the ports with different AC voltages. It uses a single-phase auto transformer from L2 / 3 levels to EL2 / 3 to suit the field.

In the example diagram below, the motor armature may be rated at 460 Vdc and supplied from a 415 Vac supply. Field voltage may be rated at 100 Vdc, originally designed to be supplied from a rectified 110 Vac supply.

Figure 34 Wiring diagram for AC supply level to L1/2/3 different to EL1/2/3 (e.g. low voltage field)

The advantages of this method are:

- 1. It only requires a low-cost, readily available, single-phase auto transformer.
- 2. The EL1/2 connections do not suffer any phase lags or leads because they connect as per standard schemes, which is important because EL1/2 sense the synchronisation.
- 3. This scheme works equally well for step-up or step-down transformers.

The phase equivalence of EL1/2/3 must at all times relate to L1/2/3.

The in-rush current of the transformer will probably blow the semiconductor fuses. Hence, fit the fuses on the secondary of the transformer for EL2/3. Fit HRC fuses in the primary feeds.

The field voltage required in the above example is 100 V, probably for operation from a rectified 110 V supply. However, with the PL/X ability to control the field current, it is preferable to feed the field supply with a higher voltage, e.g. 130 V. This provides the control loop with a supply margin, enabling more effective control.

CAUTION! EQUIPMENT DAMAGE HAZARD

The field-to-earth voltage of the motor must have the correct rating for the voltage applied to EL2.

10.7.3 Changing control or power cards

When replacing either the control card or the power assembly or transferring a control card to a new power assembly, check the values of 680) I arm BURDEN OHMS and the physical burden resistance. You **must** confirm and enter the correct burden resistor value 680) I arm BURDEN OHMS if necessary. Refer to the WARNING in "17.19.3 680) Iarm BURDEN OHMS" on page 365.

Removing the control card

- 1. Remove the PL/X's end caps.
- 2. Remove the four fixing screws at the edges of the top cover. Lift it away, making sure not to stress the HMI ribbon cable connections.
- 3 Unplug the ribbons from the control card to separate the top cover. The ribbon cable plugs have a keyway to ensure correct reconnection.
- 4. Remove the two retaining screws at the lower corners of the control card. Lift the lower edge of the control card. The card hinges on the upper pair of plastic retainers. The only resisting force is from the 2 x 20 mm interconnect pins in their sockets, just above terminals T17 to T30. Once these pins have fully withdrawn from their sockets, hinge the card gently away to an angle of about 30 degrees. At this point, the upper hinges are open. Ease the card out of the hinges.
- To re-assemble, perform the above procedure in reverse order. The control card is 5. guided by the hinges back onto the interconnect pins. It is not possible to screw the control card flat unless the interconnect pins are all correctly located.

10.8 Cooling

- Please consider the total component dissipation within the enclosure when calculating the required air throughput, including the fuses, line reactors and other sources of dissipation.
- . Refer to "10 Technical specifications" on page 91 - line reactor and semiconductor fuse ratings for component dissipation ratings.
 - 35 cubic feet per minute is approximately equivalent to 1 cubic metre per minute.
 - 180 cubic feet per minute is approximately equivalent to 6 cubic metres per minute.
 - 400 cubic feet per minute is approximately equivalent to 12 cubic metres per minute.
 - 800 cubic feet per minute is approximately equivalent to 24 cubic metres per minute.

Model PL 2-quadrant	Cooling ai dissip	r flow and ation	Model PL 2-quadrant	Cooling ai dissip	r flow and ation
PLX 4-quadrant	cfm	Watts	PLX 4-quadrant	cfm	Watts
PL/X 5	17	45	PL/X275	400	1700
PL/X 10	17	80	PL/X315	400	2000
PL/X 15	17	120		400	2200
PL/X 20	17	120	PL/X300	400	2300
PL/X 30	35	200	PL/X400	400	2500
PL/X 40	35	300	PL/X440	400	2800
PL/X 50	35	320	PL/X520	800	3200
PL/X 65	60	350			5200
PL/X 85	60	475	PL/X600	800	3700
PL/X 115	60	650	PL/X700	800	4200
PL/X 145	60	850	PL/X800	800	4700
PL/X 185	180	1000		000	5200
PL/X 225	180	1300	PL/X900	800	5200
PL 265	180	1600	PL/X980	800	5700

10.8.1 Internal fan

Refer to "7.4.4.4 Supply input for the internal fan: B1, B2" on page 57 for frame 3, frame 4 and frame 5 supply details. Note that frame 1 and frame 2 PL/Xs have internal fan supplies.

NOTE: A warning message HEATSINK OVERTEMP displays to prevent the motor from operating if the fan supply fails or is not present on power-up. Refer to "13 The MOTOR DRIVE ALARMS menu" on page 223 for further details of this message related to actual overtemp events.

PL/X 275-980: Remove the bus bar cover plate to reveal the power board terminals. The fan supply input terminals are located on the lower left-hand edge of the powerboard, marked AC FAN SUPPLY B1 N, B2 L.

10.9 Installation guide for EMC

Give special consideration to installations in member states of the European Union regarding noise suppression and immunity. IEC 1800-3 (EN61800-3) classifies the drive units as Basic Drive Modules (BDM) only for professional assemblers and the Industrial environment.

Although CE Marking affirms compliance with the EMC Directive, the application of EN 61800-3 means that no RF emission limits apply. The drive manufacturer is responsible for the provision of installation guidelines. The resulting EMC behaviour is the responsibility of the manufacturer of the system or installation. The units are also subject to the LOW VOLTAGE DIRECTIVE 73/23/EEC and are CE marked accordingly.

To comply with the European regulations usually requires you to follow the procedures outlined for the drive system - some systems may require different measures.

Installers must have a level of technical competence to install the drive correctly. Although the drive unit itself does not require control of RF emissions, it complies with the most stringent emissions and immunity requirements on all ports.

10.9.1 EN61800-3 operating environments

The 3-phase power supply port is subject to alternative guidelines. It may or may not require compliance with emissions limits, depending on the environment. Fitting a separate filter unit can help to achieve compliance, if necessary.

EN61800-3 specified operating environments	Mains conducted or radiated emissions	Filter required for compliance
Domestic (1st environment)	Mains conducted emission limits	YES Refer to supplier for a suitable filter to meet the Class A (EN 61800-3 restricted distribution, domestic environment)
Industrial (2nd environment)	No limits	NO It is usual for the filter to be omitted in industrial systems

Definition of an industrial environment - includes all establishments (other than those directly connected to a low voltage power supply network that supplies buildings used for domestic purposes).

10.9.1.1 Guidelines when using a filter

WARNING! PERSONAL INJURY HAZARD

DO NOT use AC supply filters on supplies that are un-balanced or float with respect to earth.

The drive and AC filter **MUST** have a permanent earth connection. Plugs/sockets are NOT allowed in the AC supply.

The AC supply filter contains high voltage capacitors. DO NOT touch for at least 20 seconds after the removal of the AC supply.

- The AC connections from the filter to the drive must be less than 0.3 m long. If longer, 1. they must be correctly screened.
- 2. The AC filter, drive earth and motor cable screen should connect directly to the metal of the cabinet.
- 3. Do not run filtered and unfiltered AC supply cables together.
- The AC input filter has earth leakage currents. RCD devices may need setting at 5% of 4. rated current.
- The AC supply filter must have a good earth connection to the enclosure backplane. 5. Take care with painted metal. Remove paint and ensure good contact.

10.9.2 Earthing and screening guidelines

WARNING! PERSONAL INJURY HAZARD

Safety earthing always takes precedence over EMC earthing.

- Connect a separate earth conductor between the motor housing and the main earth terminal on the drive. Run this conductor adjacent to the drive conductors. Do not ground this conductor to any other earth point.
- Connect the drive's earth terminal to the cabinet's star point or earth busbar.
- Connect the drive's Terminal 13 (0 V) to the cabinet's star point or earth busbar.
- Segregate the motor drive and 3-phase supply cables from other cables in the cabinet by at least 300 mm.
- Motor drive cables may be the screened type or armoured. Bond this pathway between the motor housing and the cabinet's point of entry using 360° gland techniques for EMC compliance.

If the motor and control cabinet are in widely different locations, bonding both ends of the screening and earth conductors may result in significant earth current flow creating large earth potential differences. In these circumstances, we recommend that a separate parallel earth conductor (PEC), possibly a bonded metal conduit, is used alongside the drive cables to give a preferential route for this current. Refer to IEC 61000-5-2 for more detail. Installation in conformance with this Standard is regarded as good practice and will result in improved EMC of the whole system.

10.10.1 EMC Compliance statement for PL/X

This apparatus complies with the protection requirements of the EMC Directive (ϵ) 2014/30/EU as follows:

10.10.1.1 CE Emissions

Control supply port and control signal port

Conducted and radiated emissions comply with the following standards:

Description	General Standard	Referenced Standard		
Radiated emissions (30.0 MHz to 1.0 GHz)	EN 61000-6-4:2007	CISPR 16-1-4:2007†, Class A		
Conducted emissions	IIIC A1.2011	CISPR 16-1-1:2010†, Class A		
Mains harmonics	EN 61000-3-2:2014	EN 61000-3-2:2014, Class A		
Mains voltage flicker (dmax=4%)	EN 61000-3-3:2013	EN 61000-3-3:2013		
Conducted emissions	EN 61800 2:2018	CISPR 16-1-4:2007†, Class B		
	EN 01000-3.2018	CISPR 16-1-1:2010†, Class B		

Mains harmonics - the control supply port active input power is less than 50 W with the class D waveshape and therefore meets EN 61000-3-2:2014 with no limits applied.

3-phase motor supply port:

Class B (EN 61800-3 unrestricted distribution, industrial environment) limits. No filter required.

To meet Class A (EN 61800-3 restricted distribution, domestic environment) mains conducted emissions limits on this port requires a separate filter. Please refer to the supplier.

10.10.1.2 CE Immunity

The unit complies with the following standards:

Description	General Standard	Referenced Standard
Electrostatic discharge		EN 61000-4-2:2009
Radiated RF immunity	EN 61000-6-2:2005	EN 61000-4-3:2006 inc A1:2008 & A2:2010
Fast transient bursts		EN 61000-4-4:2012
Surges		EN 61000-4-5:2014
Conducted immunity	EN 61900 2-2019	EN 61000-4-6:2014
Voltage dips and interruptions (PLD)	EN 01000-5.2016	EN 61000-4-34:2007

10.10.2 UL, cUL

The PL/X range frame 1, 2, 3 is UL and cUL listed. File number E168302.

11 The CHANGE PARAMETERS menu

This section lists the editable menus and parameters contained in the **CHANGE PARAMETERS** menu.

Most parameter "factory settings" are suitable for use, but you MUST enter the maximum ratings for your motor and PL/X into the CALIBRATION menu below.

11.1 CHANGE PARAMETERS/CALIBRATION

These parameters set the maximum ratings for the motor and PL/X.

The parameters marked with an asterisk (*) are required information, mostly taken from the PL/X and motor rating plates. These are the "QuickStart" parameters - refer to "3 QuickStart Guide" on page 12.

Refer to "8 How to use the keypad" on page 74 for help with making and saving your changes.

In addition:

- You can restore the default parameter settings: refer to "9.3 Restoring parameters to default conditions" on page 79.
- The PL/X can store and retrieve up to three complete instrument Recipes: refer to "17.19.1 677)RECIPE PAGE" on page 363 for details of 2 and 3-key reset operation. IMPORTANT: Recipe pages 2 and 3 each have self-contained Calibration parameters, so be careful to check them all before running the PL/X.
- If you transfer the PL/X's control card to a different power chassis or install a brand new control card, the new frame size will be automatically determined. But you **must** check and enter the correct burden resistor value into the PL/X: refer to "17.19.3 680) Iarm BURDEN OHMS" on page 365.

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R CALIBRATION

- * R 2)RATED ARM AMPS
- * R 3)CURRENT LIMIT(%)
- * R 4)RATED FIELD AMPS
- * R 5)BASE RATED RPM
- * R 6)DESIRED MAX RPM
- R 7)ZERO SPD OFFSET
- R 8>MAX TACHO VOLTS
- * R 9)SPEED FBK TYPE
 - R
 ENCODER SCALING
 4

 R
 14)IR COMPENSATION

 - R 15)FIELD CUR FB TRIM
 - R 16)ARM VOLTS TRIM
- R 17)ANALOG TACHO TRIM
- * R 18)RATED ARM VOLTS
- * R 19)EL1/2/3 RATED AC
 - R 20)MOTOR 1,2 SELECT

Figure 36 Rating plate information

Figure 37 CALIBRATION - block diagram

11.1.1 2)RATED ARM AMPS

Set the desired 100% continuous rated motor current in Amps.

PIN	Parameter description	Range			Default	t	
2	RATED ARMATURE AMPS	33-100% of P	L/X	rating	(33%) X	XX.X A	
We state this parameter in Amps. For example, the			RE	NTRY 1	1ENU	LEVEL	1
		570). 	RC	HANGE	PARAME	TERS	2
• It is possible to enter a lesser value than the current stated on the motor rating plate.		RC	ALIBRA	ATION		3	

R 2)RATED ARM AMPS

Full load motor current (82)0 / LOAD % TARGET) as a % of 2) RATED ARM AMPS	Maximum available	Maximum overload % available (with respect to full load motor current)
100%	150%	150 / 100 = 150%
90%	150%	150 / 90 = 166%
80%	150%	150 / 80 = 187%
75%	150%	150 / 75 = 200%
60%	150%	150 / 60 = 250%
50%	150%	150 / 50 = 300%
37.5%	150%	150 / 37.5 = 400%
30%	150%	150 / 30 = 500%

Table 11 Maximum overloads according to: Full load motor current, as a % of 2>RATED ARM AMPS.

11.1.2 3)CURRENT LIMIT(%)

Set the desired current limit percentage of parameter 2)RATED ARM AMPS.

P	IN	Parameter description	Range			Defaul	t		
3		CURRENT LIMIT PERCENTAGE	0-150.00% of rated armature Amps		ENT LIMIT PERCENTAGE 0-150.00% of rated armature Amps		d 150.00%		
You can adjust this parameter while the PL/X is running.					ENTRY I	1ENU POROME		1	
target, it reduces progressively to the overload target level after an appropriate dwell time.		R		ATION	_IMIT(%)	3			

11.1.3 4)RATED FIELD AMPS

Set the desired 100% DC output field current in Amps.

PIN	Parameter description	Range	Default
4	RATED FIELD AMPS	0.1 A -100% of model rating	25% Amps

Enter the rated field current from the motor rating plate.

If you don't have a value:

 Approximate it by measuring the resistance of the field winding, then use the following equation: Field current = Field rating plate Volts / Resistance in Ohms With the motor at rated temperature, recheck the

motor field resistance to adjust 2)RATED FIELD AMPS more accurately if necessary.

- Alternatively, if you know the rated field voltage:
 - 1. Adjust 100) FIELD VOLTS OP % until the field output voltage matches the value on the motor rating plate, as a % of the AC supply Volts on EL2/3.
 - Set 4)RATED FIELD AMPS to maximum. 2

Note that 4)RATED FIELD AMPS scaled by 114)FIELD REFERENCE sets the demand for the field current control loop with 100) FIELD VOLTS **OP %** operating as a clamp on the field bridge firing angle. The one that results in the lower output, has priority. Hence it is possible to function with the field current control prevailing and the voltage % as a higher safety clamp, or the voltage % clamp prevailing and the field current control as a higher safety level.

11.1.4 5)BASE RATED RPM

Set the revolutions per minute of the motor, at full field and armature Volts.

PIN	Parameter description	Range			Default	t	
5	BASE RATED RPM	0-6000 rpm			1500 rp	m	
Enter t	he base rated rpm from the motor rating	g plate.	R	ENTRY	MENU	LEVEL	1
			R	CHANGE	PARAME	TERS	2
			R	CALIBR	ATION		3
				R 5)B(ASE RATE	ED RPM	

- R ENTRY MENU LEVEL 1
- **R** CHANGE PARAMETERS 2
- 3 R CALIBRATION
 - 4>RATED FIELD AMPS R

11.1.5 6)DESIRED MAX RPM

Set the desired maximum speed of the motor in revolutions per minute.

PIN	Parameter description	Range	Default
6	DESIRED MAXIMUM RPM	0-6000 rpm	1500 rpm

This rpm value will represent a 100% speed.

- If your desired maximum rpm is lower than 5>BASE RATED RPM, be aware of the heat dissipation in the motor at full torque. Use force venting of the motor if necessary.
- If your desired maximum rpm is higher than 5>BASE RATED RPM, you must implement field weakening in the CHANGE PARAMETERS / FIELD CONTROL menu.
 Be sure to verify that your motor and load rating is correct for rotation above base speed. Failure to do so may result in mechanical breakdown with disastrous consequences.
- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R CALIBRATION 3
 - R 6)DESIRED MAX RPM

11.1.6 7)ZERO SPD OFFSET

Correct any offset from the speed feedback source.

PIN	Parameter description	Range	ıge		Default	
7	ZERO SPEED OFFSET	±5.00%		0.00%		
This parameter is helpful when correcting a tachogenerator feedback derived from an external amplifier having a slight offset.			R ENTRY M	1ENU PARAMET	LEVEL	1 2
If this parameter is adjusted unnecessarily, then it will appear as an offset on the speed feedback. Refer to "12.2.10 131)SPEED FBK MON" on page 209.			R CALIBRA	RO SPD	OFFSET	3
11.1.7 8)MAX TACHO VOLTS

Scale the tacho input for full feedback Volts at 100% speed.

PIN	Parameter description	Range	Default
8	MAXIMUM TACHO VOLTS	±200.00 V	60.00 V

Find the tacho scaling. For example:

tacho rating	х	100% speed of tacho	=	tacho scaling
0.06V	х	2000rpm	=	120.00V

Alternatively, for systems NOT using field weakening:

- Run the system in AVF at desired full-speed and 1. read the full-speed tacho volts:
 - To select the speed feedback type, refer to "11.1.8 9)SPEED FBK TYPE" on page 120.
 - To read the tacho volts, refer to "12.2.7 129) TACHO VOLTS MON" on page 208.
- Enter the reading as MAXIMUM TACHO VOLTS and 2. select a tacho feedback as the speed feedback type.

The sign for the MAXIMUM TACHO VOLTS setting should correspond to the sign of the tacho volts for positive speed demand.

For tacho volts that exceed 200 V full scale, you must provide the external resistor dropper network, as shown opposite, which then permits full-scale voltages up to 400 V. You are then able to set MAXIMUM TACHO VOLTS to half the full-scale tacho Volts. Take appropriate measures to dissipate any heat from the dropper resistors. The total power in Watts dissipated will be (Tacho signal volts)² / 20.000.

You can configure the tacho failure detection system to either trip the PL/X or automatically switch to AVF - refer to "13.1.1 171)SPD TRIP ENABLE" on page 225. Refer also to "7.6.3.1 Analog tachogenerator input" on page 64.

- R ENTRY MENU LEVEL 1
- CHANGE PARAMETERS 2 R
- R CALIBRATION 3

8>MAX TACHO VOLTS R

Refer to "11.1.12 17)ANALOG TACHO TRIM" on page 124 to obtain a precise value.

Resistor Dropper Network

11.1.8 9)SPEED FBK TYPE

Select the source of speed feedback.

rin rarameter description Range	Delault
9 SPEED FEEDBACK TYPE ARMATURE VOL ANALOG TACHO ENCODER ENCODER + ARI ENCODER + TAC	ARMATURE VOLTS OM VOLTS CHO

We derive Speed Feedback from a combination (one or more) of three fundamental sources. These may be independently monitored (refer to "12.2 DIAGNOSTICS / SPEED LOOP MONITOR" on page 206).

R ENTRY MENU LEVEL 1

- CHANGE PARAMETERS 2
- 3 R CALIBRATION
 - 9)SPEED FBK TYPE R

0) ARMATURE VOLTS (AVF):

An internal, isolated signal that is always available.

WARNING! PERSONAL INJURY HAZARD

Do not use Armature Volts Feedback mode (AVF) with field weakening systems.

Initially, we recommend using the armature volts feedback (AVF) mode during the commissioning of the PL/X. When using a tachogenerator or encoder, you can check correct polarity and input levels before including them in the feedback loop.

To use armature volts feedback, enter the 100% speed feedback volts from the motor rating plate into parameter 18)RATED ARM VOLTS. Note: For parameter 130)MOTOR RPM MON to be accurate, you must also set parameter 6) DESIRED MAX RPM to this same value.

AVF feedback contains more ripple than tacho feedback, and for smooth operation, it may be necessary to reduce the SPEED CONTROL loop gain with AVF - refer to "11.8.3 71)SPEED PROP GAIN" on page 162.

For systems using a DC contactor you must use T41 and T43 for remote AVF.

The accuracy of AVF is about 2% of full speed. You can improve this in two ways:

1) Apply IR compensation to the feedback to remove the IR drop (caused by the armature current flowing through the armature resistance). Refer to "11.1.9 14)IR COMPENSATION" on page 123.

2) Run the field control in CURRENT mode, forcing the field current (and hence flux) to remain constant, making the relationship between speed and AVF more accurate.

Refer also to "13.1.1 171)SPD TRIP ENABLE" on page 225.

1) ANALOG TACHO:

This transducer will provide a DC voltage that is proportional to speed. Refer to "7.6.3.1 Analog tachogenerator input" on page 64.

Note: With an additional bi-directional, shaft-mounted encoder it is possible to lock and/or orientate the shaft at zero speed. Refer to "11.16 CHANGE PARAMETERS / ZERO INTERLOCKS / SPINDLE ORIENTATE" on page 197.

2) ENCODER:

NOTE: Encoder lines are equivalent to pulse per revolution (PPR).

This shaft-mounted transducer provides a stream of pulses with a frequency proportional to speed. Pulses can be either a single stream with a separate direction logic output (low for Reverse, high for Forward) or a dual stream of pulses in phase quadrature that the PL/X decodes to determine the direction of rotation. Enable PHASE QUADRATURE in the ENCODER SCALING sub-menu.

Note that low frequencies give poor performance. The lower frequency limit for satisfactory performance is a 100% input frequency (i.e. at full speed of encoder) of 15 kHz (450 lines at 2000 rpm single-pulse train, or 225 lines at 2000 rpm for guadrature type). With more lines, the performance improves; with fewer lines, dynamic stability degrades.

Parameter 6) DESIRED MAX RPM determines the value of the 100% speed feedback RPM.

For other types of encoder electrical output, you must provide some external conditioning circuitry. The output format may be pulse-only for single direction, pulse-with-sign, or phase quadrature. Refer to "11.2 CHANGE PARAMETERS/ CALIBRATION/ENCODER SCALING" on page 127.

You can configure an encoder failure detection system to either trip the PL/X or automatically switch to AVF - refer to "13.1.1 171)SPD TRIP ENABLE" on page 225.

For lower full-scale frequencies, see type 3 or type 4 feedback modes below.

Note: With bi-directional encoder feedback, it is possible to lock or orientate the shaft, or both, at zero speed. Refer to "11.16 CHANGE PARAMETERS / **ZERO INTERLOCKS / SPINDLE** ORIENTATE" on page 197.

DIP3 (T16) and DIP4 (T17) accept bi-directional encoder pulse trains.

The encoder outputs must be able to provide a logic low below 2 V, and a logic high above 4 V. They may range up to 50 V maximum, and up to 100 kHz.

Both inputs are single-ended and non-isolated.

3) ENCODER + ARM VOLTS:

In this mode, the AVF provides the main dynamic feedback, while the encoder feedback is trimming the accuracy to an extremely high level.

Note that low frequencies give poor performance. The lower frequency limit for satisfactory performance with encoder + AV feedback is a 100% input frequency of 2 kHz (i.e. 60 lines at 2000 rpm single-pulse train. or 30 lines at 2000 rpm for a quadrature encoder). With more lines, the performance improves. With fewer lines, the dynamic stability degrades, mostly at low speeds.

In this mode, when using a non-quadrature, single-line encoder, the AVF automatically provides the feedback sign. The T16 digital input is made available for other uses (unless using zero speed lock - refer to "11.16 CHANGE PARAMETERS / ZERO INTERLOCKS / SPINDLE ORIENTATE" on page 197.

The value entered in 6)DESIRED MAX RPM determines the final steady-state 100% speed feedback RPM, and the value for 18)RATED ARM VOLTS produces the dynamic scaling. These two full-scale settings must correspond with each other for optimum performance.

4) ENCODER + TACHO:

In this mode, the tachogenerator provides the main dynamic feedback, and the encoder trims the accuracy to an extremely high level.

Note that low frequencies give poor performance. The lower frequency limit for reasonable performance with encoder + tacho feedback is a 100% input frequency of 2 kHz (i.e. 60 lines at 2000 rpm single-pulse train, or 30 lines at 2000 rpm for a quadrature encoder). With more lines, the performance improves. With fewer lines, the dynamic stability degrades, mostly at low speeds.

In this mode, when using a non-quadrature, single-line encoder, the Tacho automatically provides the feedback sign. The T16 digital input is made available for other uses (unless using zero speed lock - refer to "11.16 CHANGE PARAMETERS / ZERO INTERLOCKS / SPINDLE ORIENTATE" on page 197.

The value entered in 6)DESIRED MAX RPM determines the final steady-state 100% speed feedback RPM, and the value of 8)MAX TACHO VOLTS produces the dynamic scaling. These two full-scale settings must correspond with each other for optimum performance. AVF feedback usually contains ripple. It is therefore advisable to reduce the SPEED CONTROL loop gains with AVF feedback selected. Refer to "11.8.3 71) SPEED PROP GAIN" on page 162.

11.1.9 14)IR COMPENSATION

Set the % compensation for the AVF signal due to IR drop.

PI	Parameter description	Range			Defaul	t	
14	IR COMPENSATION	0-100.00%			0.00 %		
This feed To se	parameter is for when ARMATURE VOLTS : back is selected. et this parameter with AVF feedback:	speed	R R	ENTRY N CHANGE	1enu Parame	LEVEL TERS	1 2
1.	If possible, apply a significant load change system.	e to the	R		ATION R COMPI	ENSATION	3
2.	Slowly increment the parameter until the change has a minimum effect on the spee holding. Alternatively, calculate the parameter usin formula below and initially enter this valu IR (%) = (motor I x Arm Res/motor V) x	load ed ng the e: 100.	l t r	NOTE: Spo to the bac notor, th Back EM R dron is	eed is pr ck EMF o erefore: 1F = AVI a result	oportional f the F – IR drop of)
Note	Excessive compensation may lead to ins	tability.	t t r t	armature hrough t esistance armature he IR dro	current he arma e. Hence current op is high	flowing ture , when the is high, n. At zero	!

11.1.10 15)FIELD CUR FB TRIM

Set a positive trim factor for the field current feedback.

PIN	Parameter description	Range	Default
15	FIELD CURRENT FEEDBACK TRIM	1.0000 to 1.1000	1.0000

You can apply this trim factor with the PL/X running.

The factor is always greater than unity and hence can only increase the strength of the feedback. The closedloop system then receives feedback that is too high and causes a reduction of the controlled field current.

The trim is useful to run the PL/X starting with a higher than expected value of feedback to discover a precise value for 4)RATED FIELD AMPS when not known.

Determine the correct level of feedback using this trim (use the DIAGNOSTICS menu to monitor actual levels of feedback).

Enter the new precise value into 4)RATED FIELD AMPS and return this trim to 1.0000.

R ENTRY MENU LEVEL 1

armature current, the IR

drop is zero

- R CHANGE PARAMETERS 2
- R CALIBRATION

```
R
   15)FIELD CUR FB TRIM
```

3

11.1.11 16)ARM VOLTS TRIM

Set a positive trim factor for armature volts feedback.

PIN	Parameter description	Range	Default
16	ARMATURE VOLTS TRIM	1.0000 to 1.1000	1.0000

You can apply this trim factor with the PL/X running.

The factor is always greater than unity and thus can only increase the strength of the feedback. The closedloop system then receives a feedback signal that is too high. It causes a reduction of the armature voltage feedback and hence a speed reduction.

Use this trim to run the PL/X when starting with a higher than expected value of feedback to discover a precise value for 18)RATED ARM VOLTS when not known

Determine the correct level of feedback using this trim (use the DIAGNOSTICS menu to monitor actual levels of feedback).

Enter the new precise value into 18)RATED ARM. VOLTS and return this trim to 1,0000.

11.1.12 17)ANALOG TACHO TRIM

Set a positive trim factor for analog tacho feedback.

PIN	Parameter description	Range	Default
17	ANALOG TACHO TRIM	1.0000 to 1.1000	1.0000

You can apply this trim factor with the PL/X running.

The factor is always greater than unity and thus can only increase the strength of the feedback. The closedloop system then receives a feedback signal that is too high. It causes a reduction of the armature voltage feedback and hence a speed reduction.

Use this trim to run the PL/X when starting with a higher than expected value of feedback to discover a precise value for 8)MAX TACHO VOLTS when not known.

Determine the correct level of feedback using this trim (use the DIAGNOSTICS menu to monitor actual levels of feedback).

Enter the new precise value into 8)MAX TACHO VOLTS and return this trim to 1.0000.

R	ENTRY	MENU	LEVEL	1
---	-------	------	-------	---

- 2 **R** CHANGE PARAMETERS
- R CALIBRATION 3
 - 16) ARM VOLTS TRIM R

- R ENTRY MENU LEVEL 1
- **R CHANGE PARAMETERS** 2
- R CALIBRATION 3

17>ANALOG TACHO TRIM R

11.1.13 18)RATED ARM VOLTS

Set the desired maximum armature voltage.

PIN	Parameter description	Range	Default
18	RATED ARMATURE VOLTS	0.0 to 1000.0 V	460.0 V DC

NOTE: This value must not exceed the maximum rated armature volts defined on the motor rating plate.

The armature volts is approximately proportional to the motor speed. For example:

A motor rated at 400 V, 2000 rpm, is required to run at a maximum speed of 1000 rpm. Therefore the rated armature volts at 1000 rpm is 200 V, representing a 100% speed.

Refer to "11.1.11 16)ARM VOLTS TRIM" on page 124 to obtain a precise value.

If the desired maximum rpm is higher than the base rpm, then implement field weakening in the CHANGE PARAMETERS / FIELD CONTROL menu. Be sure to verify that your motor and load rating is correct for rotation above base speed. Failure to do so may result in mechanical breakdown with disastrous **consequences.** In this mode, the rated armature volts is usually set to the rating plate value to make full use of the motor ratings. Field weakening provides a further speed increase, and therefore, the armature voltage remains clamped at the maximum rated value. The Field Weakening menu refers to this as the spillover voltage.

R	ENTRY	MENU	LEVEL	1
---	-------	------	-------	---

- **R** CHANGE PARAMETERS 2
- R CALIBRATION 3

18)RATED ARM VOLTS R

Note: At low speeds, be aware of heat dissipation in the motor at full torque. Use force venting of the motor if necessary.

11.1.14 19)EL1/2/3 RATED AC

Enter the value of the lowest AC supply voltage connected to either EL1, EL2 or EL3.

PIN	Parameter description	Range			Defaul	t	
19	EL1/2/3 RATED AC	0-1000.0 V			415.0 V	AC	
Refer t monito Refer t EL1/2/3	o "12.1.1 169)EL1/2 RMS MON" on page or the actual AC volts. o "10.7.2 L1/2/3 AC supply level differer 3" on page 107	205 to It to	R R R	ENTRY I	MENU PARAME ATION	LEVEL	1 2 3
The SU to dete thresh here. B rated v requiri	PPLY PHASE LOSS alarm uses this parameter ermine the alarm threshold. The loss det old is approximately 75% of the voltage of By entering a voltage higher or lower that voltage, it is possible to accommodate sy ng detection at higher or lower thresholo	neter ection entered n the stems ds.		R [19)E	L1/2/3	RATED	AC

Example:

 With 19)EL1 / 2 / 3 RATED AC set to 500 V. the alarm will detect at 375 V on EL1/2/3. (75% of 500 = 375)

Refer to "13.3 MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE" on page 234 - SUPPLY PHASE LOSS, also refer to "10.7 Supply loss shutdown" on page 106.

11.1.15 20) MOTOR 1,2 SELECT

Select Motor 1 or Motor 2 editable parameter set to be active.

PIN	Parameter description	Range	Default
20	MOTOR 1,2 SELECT	MOTOR 1 MOTOR 2	MOTOR 1

This parameter comprises two identical sets of parameters: MOTOR 1 and MOTOR 2.

The MOTOR 1, 2 SELECT parameter determines which parameter set becomes active (the unselected one becoming passive).

- Each parameter set can have a different setting for • the same parameter.
- The parameters are all editable.
- · You can edit the active parameter set within the CHANGE PARAMETERS menu.
- · Edit the passive parameter set within the CONFIGURATION / DRIVE PERSONALITY / PASSIVE MOTOR SET menu.
- You can edit MOTOR 1,2 SELECT using a digital input to provide external set selection.
- Also, use MOTOR 1,2 SELECT as a diagnostic to identify the active set and optionally connect to a digital output if desired.

- R ENTRY MENU I FUEL 1 R CHANGE PARAMETERS 2
- R CALIBRATION 3
- 20)MOTOR 1,2 SELECT R

11.2 CHANGE PARAMETERS/CALIBRATION/ENCODER SCALING

The ENCODER SCALING menu allows you to set the encoder parameters. (Ignore this menu if there is no encoder).

NOTE: You can monitor the Encoder RPM whether it is being used for feedback or not:

DIAGNOSTICS / SPEED LOOP MONITOR / 132) ENCODER RPM MON

Refer to "12.2.9 132)ENCODER RPM MON" on page 209

- ENTRY MENU LEVEL 1 R
- CHANGE PARAMETERS 2 R
- CALIBRATION 3 R
- R ENCODER SCALING 4
 - 10)QUADRATURE ENABLE R 11)ENCODER LINES 12>MOT/ENC SPD RATIO
 - 13)ENCODER SIGN

11.2.1 10)QUADRATURE ENABLE

Program the encoder inputs T16 and T17.

PIN	Parameter description	Range	Default
10	QUADRATURE ENABLE	DISABLED ENABLED	ENABLED

The encoder inputs on T16 and T17 can be programmed to accept two types of encoder pulse trains:

0) Pulse with sign 10) QUADRATURE ENABLE is DISABLED

The encoder provides a single train of pulses on T17. You make available a rotation direction logic signal on T16 (low for reverse, high for forward), which you can invert using the 13>ENCODER SIGN parameter. **NOTE:** If this type of encoder in conjunction with AVF or tacho, the analog feedback automatically provides the feedback sign, making the T16 digital input available for other uses (unless zero speed lock requires T16 for the encoder direction). Refer to "11.16 CHANGE PARAMETERS / ZERO INTERLOCKS / SPINDLE ORIENTATE" on page 197.

Refer also to "11.1.8 9)SPEED FBK TYPE" on page 120.

1) Two pulse trains in phase guadrature 10) QUADRATURE ENABLE is ENABLED.

The encoder provides two pulse trains that are phaseshifted by 90 degrees.

The PL/X automatically decodes the quadrature information to produce a rotation direction sign. You can invert this using the 13) ENCODER SIGN parameter.

With the PL/X rotating to ±100% speed using AVF as the feedback source, use a high-quality oscilloscope

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R CALIBRATION 3
- R ENCODER SCALING 4
 - 10)QUADRATURE ENABLE R

Refer to "3.3.1.2 Optional feedback devices" on page 16 and "7.6.1.3 Encoder inputs" on page 62.

Channel B leading A

to observe the pulse trains and check for good phase holding and no interference.

- Low-frequency feedback may give poor results at low speed. Therefore, we recommend using the Mode 3 or Mode 4 combined feedback type for an encoder (or other types of pick-up) that provides less than 15 kHz at full speed. Refer to "11.1.8 9) SPEED FBK TYPE" on page 120.
- The signal inputs to T16 and T17 must be clean and noise-free - the encoder inputs must deal with and recognise very short pulses preventing the use of heavy noise filtering on these inputs.
- Ground loops are one of the prime causes of unwanted noise on encoder signals. Ensure the encoder electronics 0 V is separately wired back to 0 V on terminal 13. with no encoder wiring earth connections at the motor end.
- The encoder casing will probably be earthed because of its mechanical connection to the motor or machine. It is usually acceptable as long as the internal electronics 0 V has a separate connection point. Some encoder manufacturers provide a by-pass capacitor inside the encoder between the electronics 0 V and the casing. Unfortunately, this capacitor makes a very effective high-frequency ground loop and may require removing to prevent ground loop noise on the encoder signals - consult the encoder supplier.
- Ultimately, it may be necessary to install an isolation link in the encoder loop.
- Route all encoder wiring away from heavy current or other noise-generating cables. Use an insulated screened cable with a separate screen for each encoder signal connected at the drive terminal T13. This cable should also be screening the encoder 0 V and power supply within the cable.

Note that encoders with quadrature outputs require the phase difference between the two pulse trains to remain as close to 90 degrees as possible:

- If the encoder is not mounted and centred accurately on the shaft, it can impact the pulse train phase relationship.
- If the encoder appears to gyrate as the shaft rotates you must correct the problem before commissioning.

11.2.2 11)ENCODER LINES

Enter the encoder resolution in pulses per revolution.

PIN	Parameter description	Range	Default
11	ENCODER LINES	1-6000	1000

Enter the number of lines from the encoder rating plate.

Alternatively, enter the number of cycles of high/low for one pulse train during one revolution. For example, for a toothed gear wheel with 60 teeth and a magnetic pick-up, enter the number 60.

Note that there is an upper-frequency limit of 100 kHz.

11.2.3 12)MOT/ENC SPD RATIO

Set the motor revolutions as a ratio of the encoder revolutions.

PIN	Parameter description	Range		Defau	lt	
12	MOTOR/ENCODER SPEED RATIO	0-3.0000		1.0000)	
 MOT/ENC SPD RATIO = Motor RPM / Encoder RPM (true for all speeds) This parameter can correct for variances between the motor RPM and the encoder RPM. For example: : Sometimes the encoder is not fixed to the motor shaft and may rotate at an RPM that is a non-unity ratio of the motor RPM. Sometimes systems may have the encoder geared 			R ENTRY R CHANG R CALIB R ENCOD R 12	MENU E PARAME RATION ER SCAL: MOT/ENC	Level Eters Ing : SPD Rat	1 2 3 4 10
 Sometimes systems may have the encoder geared up to obtain a higher feedback frequency. The encoder RPM % is provided by the hidden parameter 709>MOTOR RPM %. 				sing the c source:	encoder as	sa
6)DES It is als a pure Both 1 param indep They b the en	IRED MAX RPM then scales this to 100% so scaled by 12>MOT < ENC SPD RATIO a multiplying factor. 32>ENCODER RPM MON and 709>MOTOR heters are purely encoder signals that endently of the type of feedback selec both read zero when there are no puls acoder inputs.	cting as RPM % work cted. es on	 Rur mo inte fee an Set EN/ LIN Rur mo 132 MOH DIA to V 	de and ve grity of tl dback sig oscillosco the QUAI BLE and ES param in AVF fe de and m SENCODE I paramet GNOSTIC erify the	eedback erify the he encode nals using pe. DRATURE ENCODER leters. eedback onitor the ER RPM ter in the IS menu encoder	r

The CHANGE PARAMETERS menu

R ENTRY MENU LEVEL 1 **R CHANGE PARAMETERS** 2 R CALIBRATION 3 R ENCODER SCALING 4

11)ENCODER LINES R

operates as expected.

11.2.4 13)ENCODER SIGN

Modify the encoder rotation sign.

line encoders

PIN	Parameter description	Range			Default		
13	ENCODER SIGN	INVERT NON-INVERT			NON-INVERT		
Use this parameter to invert the encoder feedback sign.				CUTOU	MPLUI		
		0	R	ENTRY	MENU	LEVEL	1
	The armature voltage or Tacho compon	ont	R	CHANGE	PARAME	TERS	2
automatically provides the feedback sign while using combined feedback modes type 3 and type 4 with single			R	CALIBR	ATION		3
			R	ENCODE	R SCALT	NG	4

R ENCODER SCALING 4

R 13)ENCODER SIGN

11.3 CHANGE PARAMETERS / RUN MODE RAMPS

This block sets the rate of acceleration and deceleration of the motor independently of the incoming reference.

There are four independent up/down/forward/reverse ramp times and an output that indicates that ramping is taking place. The output can be held, or preset to any value with preset commands from various sources to help with many applications.

The ramp shape can be profiled to a classic S shape for smooth control. Refer to "11.3.12 32)RAMP S-PROFILE %" on page 137.

RUN MODE RAMPS may be programmed to be active when the PL/X is in stop mode. Refer to the table below. This function is useful in cascaded systems.

NOTE: Other ramp times overide the run mode ramps:

- Set a different down ramp time for stopping modes. Refer to "11.6.2 56)STOP RAMP TIME" on page 153.
- Set a different up/down ramp time Jor JOG control. Refer to "11.4.7 43)JOG/SLACK RAMP" on page 143.

The incoming reference can have a minimum speed imposed in either direction. The ramp preset function is momentary in jog mode.

R	E	ITRY MENU LEVEL 1
R	CI	IANGE PARAMETERS 2
R	R	IN MODE RAMPS 3
	R	21)RAMP OP MONITOR
	R	22)FORWARD UP TIME
	R	23)FORWARD DOWN TIME
	R	24)REVERSE UP TIME
	R	25)REVERSE DOWN TIME
		26)RAMP INPUT
		27)FORWARD MIN SPEED
		28)REVERSE MIN SPEED
		29)RAMP AUTO PRESET
		30)RAMP EXT PRESET
		31)RAMP PRESET VALUE
		32)RAMP S-PROFILE %
		_33)RAMP HOLD
		34)RAMPING THRESHOLD
	R	35)RAMPING FLAG

The GOTO of this block resides in the CONFIGURATION > BLOCK OP CONFIG menu - refer to Page 361.

Mode	29)RAMP AUTO PRESET	30)RAMP EXT PRESET	Action of run mode ramps	Action of jog mode ramps
1	DISABLED	DISABLED	Held at zero when stopped. Starts from zero.	Held at zero when stopped. Starts from zero.
2	DISABLED	ENABLED	Held at PRESET VALUE permanently.	Held at PRESET VALUE when stopped. Starts from PRESET VALUE.
3	ENABLED	DISABLED	Ramp continues to follow input reference when stopped. Starts from PRESET VALUE.	Ramp continues to follow input reference when stopped. Starts from PRESET VALUE.
4	ENABLED	ENABLED	Held at PRESET VALUE permanently.	Held at PRESET VALUE when stopped. Starts from PRESET VALUE.

Mode 1 ensures that the ramp output resets to 0.00% during all stopping modes.

Modes 2/3/4 have an active ramp output during all stopping modes that are useful in cascaded systems. The action of momentarily starting presets the ramps. (Default value 0.00%).

NOTE: 30)RAMP EXT PRESET has permanent action on run mode ramps and, if already high, has a momentary action at the start of a JOG request. The 29)RAMP AUTO PRESET input is ANDed with 720)SYSTEM RESET pulse, which is simultaneous with the release of the current loop.

Operating Function Refer to parameter 168>RUNNING MODE MON	JOG MODE SELECT input level T19	START input level T33	JOG input level T32	RAMP input total value	Applied Ramp Time	Contactor State
Stopped	low	low	low	reference	Stop ramp	OFF
Stopped	high	low	low	reference	Stop ramp	OFF
Running	low	high	low	reference	Run mode ramp	ON
Crawl	high	high	low	Crawl speed	Run mode ramp	ON
Jog speed 1	low	low	high	Jog speed 1	Jog/slack ramp	ON
Jog speed 2	high	low	high	Jog speed 2	Jog/slack ramp	ON
Slack 1 take-up	low	high	high	ref + slack 1	Jog/slack ramp	ON
Slack 2 take-up	high	high	high	ref + slack 2	Jog/slack ramp	ON

11.3.1 21)RAMP OP MONITOR

Monitor the output level of the ramp block.

PIN	Parameter description	Range				
21	RAMP OUTPUT MONITOR	±300.00%				
When viewing 21) RAMP OP MONITOR, you can branch			R	ENTRY MENU	LEVEL	1
noh (h			R	CHANGE PARAMET	TERS	2
			R	RUN MODE RAMPS	3	3
				R 21)RAMP OP	MONITOR	
11.3.2	22)FORWARD UP TIME					

Set the ramp time for 0-100% of the forward (positive) reference.

PIN	Parameter description	Range	Default			
22	FORWARD UP TIME	0.1 to 600.0 sec	10.0 seconds			
						_
		R	ENTRY I	MENU	LEVEL	1
		R	CHANGE	PARAME	TERS	2
		r RUN MO		DE RAMP	s	3
			R 22)F	FORWARD	UP TIME	

11.3.3 23)FORWARD DOWN TIME

Set the ramp time for 100-0% of the forward (positive) reference.

PIN	Parameter description	Range		Default		
23	FORWARD DOWN TIME	0.1 to 600.0 seconds		10.0 seconds		
		R	ENTRY I	MENU	LEVEL	. 1
		R	CHANGE	PARAME	TERS	2
		R	RUN MO	DE RAMPS	5	3
			R 23)F	FORWARD	DOWN	TIME

11.3.4 24) REVERSE UP TIME

Set the ramp time for 0-100% of the reverse (negative) reference.

PIN	Parameter description	Range	Default			
24	REVERSE UP TIME	0.1 to 600.0 seconds		10.0 seconds		
		R	ENTRY I	MENU	LEVEL	1
		R	CHANGE	PARAME	TERS	2
		R	RUN MO	DE RAMP	S	3
			R 24) F	REVERSE	UP TIME	

11.3.5 25)REVERSE DOWN TIME

Set the ramp time for 100-0% of the reverse (negative) reference.

PIN	Parameter description	Range		Default	t	
25	REVERSE DOWN TIME	0.1 to 600.0 se	conds	10.0 see	conds	
		R	ENTRY	MENU	LEVEL	1
		R	CHANGE	PARAME	TERS	2
		R	RUN MO	DE RAMP:	S	3
			R 25)	REVERSE	DOWN 1	IME

11.3.6 26)RAMP INPUT

Set the run mode ramps input value.

PIN	Parameter description	Range		Defau	ılt	
26	RAMP INPUT	±105.00%		0.00%		
By defa an exte value. ramp i	ault this parameter connects to T4, allow ernal analog reference to enter the ramp This parameter then behaves as a monit nput value.	ing input or of the	R R R	ENTRY MENU Change Param Run Mode Ram	LEVEL ETERS PS	1 2 3

11.3.7 27)FORWARD MIN SPEED

Support the forward (positive) ramp output at a minimum level.

PIN	Parameter description	Range	Default
27	FORWARD MINIMUM SPEED	0.00 to 105.00%	0.00%

With 27)FORWARD MIN SPEED set to greater than 0.5%, and 28) REVERSE MIN SPEED set from 0 to -0.5%, then 27)FORWARD MIN SPEED is operative and preventing a negative ramp output. This facility will prevent accidental negative rotation.

When parameters 27)FORWARD MIN SPEED and 28) **REVERSE MIN SPEED** are set outside a band of ±0.5%. then both minimum speeds are active, with 0.5% hysteresis around zero.

NOTE: With 27) FORWARD MIN SPEED set from 0 to +0.5%, the ramp output follows the input at the desired ramp rates through zero, i.e. no minimum speeds are operating, and there is no hysteresis around zero.

R ENTRY MENU LEVEL 1

R CHANGE PARAMETERS 2

R RUN MODE RAMPS 3

27)FORWARD MIN SPEED

11.3.8 28)REVERSE MIN SPEED

Support the reverse (negative) ramp output at a minimum level.

PIN	Parameter description	Range	Default
28	REVERSE MINIMUM SPEED	0.00 to -105.00%	0.00%

With 27)FORWARD MIN SPEED set to greater than 0.5%, and 28) REVERSE MIN SPEED set from 0 to -0.5%, then 27) FORWARD MIN SPEED is operative and preventing a negative ramp output. This facility will prevent accidental negative rotation.

When parameters 28) REVERSE MIN SPEED and 27) FORWARD MIN SPEED are set outside a band of ±0.5%. then both minimum speeds are active, with 0.5% hysteresis around zero.

NOTE: With **27) FORMARD MIN SPEED** set from 0 to +0.5%, the ramp output follows the input at the desired ramp rates through zero, i.e. no minimum speeds are operating, and there is no hysteresis around zero.

R	ENTRY	MENU	LEVEL	1
---	-------	------	-------	---

R CHANGE PARAMETERS 2

R RUN MODE RAMPS 3

28) REVERSE MIN SPEED

11.3.9 29)RAMP AUTO PRESET

Enable the system reset pulse to also preset the ramp.

PIN	Parameter description	Range			Defaul	t	
29	RAMP AUTOMATIC PRESET	DISABLED ENABLED			ENABLE	Ð	
Enable the system reset pulse to set the ramp value to the value of 31 CAMP PRESET VALUE .			R	ENTRY N	1ENU	LEVEL	1
Each time the main contactor energises, 720) SYSTEM			к R	RUN MOL	DE RAMP:	ieks S	2
REDET	produces a logic puise (5 ms).			29)R	AMP AU	TO PRESET	г

11.3.10 30) RAMP EXT PRESET

Enable to hold the ramp in preset mode.

PIN	Parameter description	Range	Default
30	RAMP EXTERNAL PRESET	DISABLED ENABLED	DISABLED
A logic	high enables this preset mode.		

R ENTRY MENU LEVEL 1

- **R** CHANGE PARAMETERS 2
- R RUN MODE RAMPS 3

30)RAMP EXT PRESET

11.3.11 31)RAMP PRESET VALUE

Set a run mode ramps block output value for when the ramp is preset.

PIN	Parameter description	Range	Default
31	RAMP PRESET VALUE	±300.00%	0.00%

Sets the value appearing on the output of the run mode ramps block when the run mode ramps block is preset by 29)RAMP AUTO PRESET or 30)RAMP EXT PRESET.

R	ENTRY MENU	EVEL 1
R	CHANGE PARAMETE	.RS 2
R	RUN MODE RAMPS	3

31)RAMP PRESET VALUE

11.3.12 32)RAMP S-PROFILE %

Set the % of the S ramp shape at each end.

PIN	Parameter description	Range	Default
32	RAMP S-PROFILE %	0.00 to 100.00%	0.50%

A value of 0.00% produces a linear ramp.

Larger values produce an increase in the length of the S ramp at each end of the linear ramp. The rate of change in the remaining linear portion is maintained. Therefore the ramp time becomes longer as the value of RAMP S-PROFILE % increases.

R ENTRY MENU LEVEL 1

- **R** CHANGE PARAMETERS 2 R RUN MODE RAMPS 3
 - 32)RAMP S-PROFILE %

11.3.13 33)RAMP HOLD

Enable to hold the ramp at the present value.

PIN	Parameter description	Range			Default	t	
33	RAMP HOLD	DISABLED ENABLED			DISABL	ED	
ENABLED NOTE: The 30)RAMP EXT PRESET function overrides the 33)RAMP HOLD function.		R R R	ENTRY I CHANGE RUN MOD 33)R	1enu Parame De Ramp: Xamp Hol	LEVEL TERS S _D	1 2 3	

11.3.14 34) RAMPING THRESHOLD

Set the operating threshold for the 35>RAMPING FLAG output.

	PIN	Parameter description	Range		Default	t	
	34	RAMPING THRESHOLD	0.00 to 100.0	0%	2.50%		
35)RAMPING FLAG output is low when the output of the ramp is within this % tolerance of its target value.			put of value.		MENU	LEVEL	1
35)RAMPING FLAG output is HIGH when the output of the ramp is NOT within this % tolerance of its target value. And HIGH when the PL/X holds the ramp at a value differing from the input by more than the			R RUN MO	DE RAMPS	S	2	
			at he	34)	RAMPING	THRESHOL	D

11.3.15 35)RAMPING FLAG

page 138.

The ramping flag is set HIGH when ramping.

threshold. Refer to "11.3.15 35)RAMPING FLAG" on

PIN	Parameter description	Range	Default
35	RAMPING FLAG	LOW HIGH	LOW

You can use the ramping flag to modify the speed loop integrator during ramping. Refer to "11.9.6 78)INT % DURING RAMP" on page 166.

By default, Digital output DOP2 on terminal 23 connects to 35)RAMPING FLAG.

- Refer also to "11.6.1 Precise stopping" on page 152.
- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R RUN MODE RAMPS 3
 - R 35)RAMPING FLAG

11.4 CHANGE PARAMETERS / JOG CRAWL SLACK

This menu provides adjustment for parameters associated with jogging, slack take-up and crawling.

Refer to "11.4.6 42)JOG MODE SELECT" on page 142 for a table showing the eight modes of operation available.

Two hidden PINs provide output flags:

• 689) IN JOG FLAG

This parameter is HIGH during the jogging process. It goes LOW when the ramp returns to the current run level.

714) IN SLACK FLAG

This parameter is HIGH during the slack take-up process. It goes LOW when the ramp returns to the current run level. Refer to "16.6 APPLICATION BLOCKS / TORQUE COMPENSATOR" on page 279.

Mode	29)RAMP AUTO PRESET	30)RAMP EXT PRESET	Action of run mode ramps	Action of jog mode ramps
1	DISABLED	DISABLED	Held at zero when stopped. Starts from zero.	Held at zero when stopped. Starts from zero.
2	DISABLED	ENABLED	Held at PRESET VALUE permanently.	Held at PRESET VALUE when stopped. Starts from PRESET VALUE.
3	ENABLED	DISABLED	Ramp continues to follow input reference when stopped. Starts from PRESET VALUE.	Ramp continues to follow input reference when stopped. Starts from PRESET VALUE.
4	ENABLED	ENABLED	Held at PRESET VALUE permanently.	Held at PRESET VALUE when stopped. Starts from PRESET VALUE.

Mode 1 ensures that the ramp output resets to 0.00% during all stopping modes.

Modes 2/3/4 have an active ramp output during all stopping modes that are useful in cascaded systems. The action of momentarily starting presets the ramps. (Default value 0.00%).

NOTE: 30)RAMP EXT PRESET has permanent action on run mode ramps and, if already high, has a momentary action at the start of a JOG request. The 29)RAMP AUTO PRESET input is ANDed with 720)SYSTEM RESET pulse, which is simultaneous with the release of the current loop.

Figure 39 JOG CRAWL SLACK, including RUN MODE RAMPS - block diagram

11.4.1 37)JOG SPEED 1

Set the value of jog speed 1, usually used for a forward jog.

PIN	Parameter description	Range		Default	:	
37	JOG SPEED 1	±100.00%		5.00%		
			R ENTRY R CHANGE R JOG CR R 370	MENU : PARAME' :AWL SLA(JOG SPEE	LEVEL TERS CK	1 2 3

11.4.2 38)JOG SPEED 2

Set the value of jog speed 2, usually used for a reverse jog.

PIN Parameter description	Range	Default
38JOG SPEED 2±	±100.00%	-5.00%
	R ENTRY M R CHANGE R JOG CRA R 38)J	IENU LEVEL 1 PARAMETERS 2 IWL SLACK 3 OG SPEED 2

11.4.3 39)SLACK SPEED 1

Set the value of slack speed 1, usually used to increase speed.

PIN	Parameter description	Range		Default		
39	SLACK SPEED 1	±100.00%		5.00%		
			R ENTRY M	ENU	LEVEL	1
			R CHANGE I	PARAMET	ERS	2
			R JOG CRA	WL SLAC	ж	3
			R 39)SL	lack sp	EED 1	

11.4.4 40)SLACK SPEED 2

Set the value of slack speed 2, usually used to decrease speed.

PIN	Parameter description	Range		Defau	lt	
40	SLACK SPEED 2	±100.00%		-5.00%)	
			R ENTRY	MENU	LEVEL	1
			R CHANG	e parame	ETERS	2
		R JOG CRAWL SLACK		ACK	3	
			r 40	SLACK S	PEED 2	

11.4.5 41)CRAWL SPEED

Set the value of crawl speed.

PIN	Parameter description	Range		Defaul	t	
41	CRAWL SPEED	±100.00%		10.00%		
			R ENTRY	MENU	LEVEL	1
			R CHANGE	PARAME	TERS	2
			R JOG CR	AWL SLA	СК	3
			R 41)	CRAWL SP	PEED	

11.4.6 42)JOG MODE SELECT

Select a JOG mode.

PIN	Parameter description	Range	Default
42	JOG MODE SELECT	LOW HIGH	LOW

This parameter combines with the JOG/START inputs to provide a jog/crawl/slack mode.

R ENTRY MENU LEVEL	1
--------------------	---

R CHANGE PARAMETERS 2

R JOG CRAWL SLACK 3

R 42>JOG MODE SELECT

Operating Function Refer to parameter 168>RUNNING MODE MON	JOG MODE SELECT input level T19	START input level T33	JOG input level T32	RAMP input total value	Applied Ramp Time	Contactor State
Stopped	low	low	low	reference	Stop ramp	OFF
Stopped	high	low	low	reference	Stop ramp	OFF
Running	low	high	low	reference	Run mode ramp	ON
Crawl	high	high	low	Crawl speed	Run mode ramp	ON
Jog speed 1	low	low	high	Jog speed 1	Jog/slack ramp	ON
Jog speed 2	high	low	high	Jog speed 2	Jog/slack ramp	ON
Slack 1 take-up	low	high	high	ref + slack 1	Jog/slack ramp	ON
Slack 2 take-up	high	high	high	ref + slack 2	Jog/slack ramp	ON

11.4.7 43)JOG/SLACK RAMP

Set a ramp time for jog/slack mode.

PIN	Parameter description	Range			Defaul	t	
43	JOG/SLACK RAMP	0.1 to 600.0 s	sec	onds	1.0 seco	onds	
The jo	g and slack modes use this ramp time:		R	ENTRY I	MENU	LEVEL	1
 This ramp time applies irrespective of ramp speed demand polarity and direction. 		speed	R	CHANGE	PARAME	TERS	2
• It is ran	s the time taken to accomplish a 100% cł np speed demand.	nange in	RF	JOG CRI 2 43)J	AWL SLA JOG/SLA	CK CK RAMP	3

11.5 CHANGE PARAMETERS / MOTORISED POT RAMP

This menu controls parameters for the motorised potentiometer function (MP) (the default terminal function for terminals T7, T8, T9).

The motorised potentiometer function provides a ramping facility that is in addition to the usual reference ramp.

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2

The GOTO of this block resides in the CONFIGURATION/ BLOCK OP CONFIG menu - refer to Page 361. MOTORISED POT RAMP 3 45>MP OP MONITOR 46>MP UP TIME 47>MP DOWN TIME 48>MP UP COMMAND 49>MP DOWN COMMAND 50>MP MAX CLAMP 51>MP MIN CLAMP 52>MP PRESET 53>MP PRESET VALUE 54>MP MEMORY BOOT-UP

Figure 40 MOTORISED POT RAMP - block diagram

11.5.1 **45)MP OP MONITOR**

Monitor the output value of the motorised potentiometer function.

PIN	Parameter description	Range			
45	MOTORISED POTENTIOMETER OUTPUT MONITOR	±300.00%			
5.6					
Refer 1	to "11.7.1 62)INT SPEED REF 1" on page	158.	R	ENTRY MENU LEVEL	1
			R	CHANGE PARAMETERS	2
				MOTORISED POT RAMP	3
				45>MP OP MONITOR	

11.5.2 46) MP UP TIME

Set a time for a 100% change in the positive direction.

PIN	Parameter description	Range	Default	
46	MOTORISED POTENTIOMETER UP TIME	0.1 to 600.0 seconds	10.0 secon	ıds
		R ENTR	RY MENU LE	EVEL 1
		R CHAN	IGE PARAMETER	RS 2
		MOTO	RISED POT RE	AMP 3

46)MP UP TIME

11.5.3 47) MP DOWN TIME

Set a time for a 100% change in the negative direction.

PIN	Parameter description	Range		Default	t	
47	MOTORISED POTENTIOMETER DOWN TIME	0.1 to 600.0 sec	10.0 see	conds		
		R	ENTRY I	MENU	LEVEL	1
		R CHANGE		PARAME	TERS	2
			MOTORIS	SED POT	RAMP	3
			47)	IP DOWN	TIME	

11.5.4 48) MP UP COMMAND

Enable the motorised potentiometer to rotate towards the positive limit.

PIN	Parameter description	Range			Default	t	
48	MOTORISED POTENTIOMETER UP COMMAND	DISABLED ENABLED			DISABLED		
NOTE:	There is no ramping when parameters 4	18) . h a th	R	ENTRY I	1ENU	LEVEL	1
ENABL	ED.	both	R	CHANGE	PARAME	TERS	2
				MOTORIS	SED POT	RAMP	3
				48)	IP UP CO	OMMAND	

11.5.5 49) MP DOWN COMMAND

Enable the motorised potentiometer to rotate towards the negative limit.

PIN	Parameter description	Range		Default	:	
49	MOTORISED POTENTIOMETER DOWN COMMAND	DISABLED ENABLED	DISABLED			
NOTE: MP UP	There is no ramping when parameters 4 COMMAND and 49>MP DOWN COMMAND are	B) R both	ENTRY I	1ENU		1
ENABL	ENABLED.		MOTORIS	SED POT	RAMP	2
			49)	IP DOWN	COMMAND	

11.5.6 50) MP MAX CLAMP

Set the limit of positive (clockwise) rotation of the motorised potentiometer.

PIN	Parameter description	Range			Default	t	
50	MOTORISED POTENTIOMETER MAXIMUM CLAMP	±300.00%		100.00%			
Clamps the 53 > MP PRESET VALUE parameter: • Always ensure the maximum and the minimum			R	ENTRY I	1ENU POROME		1
clar	nps allow for movement between them.		ĸ	MOTODI	CANANE SED DOT		~ ~
 Do not let the clamps cross each other. Always set a maximum clamp value that is greater than the minimum clamp value. 		ays set 1 the		50)	IP MAX (CLAMP	3

11.5.7 51) MP MIN CLAMP

Set the limit of negative (anti-clockwise) rotation of the motorised potentiometer.

PIN	Parameter description	Range	Default
51	MOTORISED POTENTIOMETER MINIMUM CLAMP	±300.00%	-100.00%

R ENTRY MENU

R CHANGE PARAMETERS

MOTORISED POT RAMP

51)MP MIN CLAMP

LEVEL

1

2

3

Clamps the 53>MP PRESET VALUE parameter:

- Always ensure the maximum and the minimum clamps allow for movement between them.
- **Do not** let the clamps cross each other. Always set a maximum clamp value that is greater than the minimum clamp value.

11.5.8 52)MP PRESET

Enable to set the output to the MP PRESET VALUE.

PIN	Parameter description	Range			Default	t	
52	MOTORISED POTENTIOMETER PRESET	DISABLED ENABLED			DISABLED		
720)SYSTEM RESET can connect to this parameter rather than the default connection from LIP7 if			R	ENTRY I	1ENU	LEVEL	1
requiri	ng an automatic preset upon start.		R	CHANGE	PARAME	TERS	2
Refer to "17.16 CONFIGURATION / IUMPER				MOTORIS	SED POT	RAMP	3
CONNI	CONNECTIONS" on page 360.			_52)№	IP PRESE	ET	

11.5.9 53) MP PRESET VALUE

Set the output value used when MP PRESET is set to enabled.

PIN	Parameter description	Range			Default	t	
53	MOTORISED POTENTIOMETER PRESET VALUE	±300.00%			0.00%		
			R	ENTRY N	1ENU	LEVEL	1
		R CHANGE		CHANGE	PARAME	TERS	2
				MOTORIS	SED POT	RAMP	3
				53)M	IP PRESE	et value	

11.5.10 54) MP MEMORY BOOT-UP

Select to restore the last value of the MOP when powering up the PLX.

PIN	Parameter description	Range	Default
54	MOTORISED POTENTIOMETER MEMORY BOOT-UP	DISABLED ENABLED	DISABLED

Enabling this parameter allows the last output value of the motorised output potentiometer to be saved on power-down and restored on power-up.

R ENTRY MENU LEVEL 1

R CHANGE PARAMETERS 2

MOTORISED POT RAMP 3

54>MP MEMORY BOOT-UP

11.6 CHANGE PARAMETERS / STOP MODE RAMP

Use this menu to control the behaviour when removing START.

Refer to "Figure 46 SPEED CONTROL - block diagram" on page 161.

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2

3

- R STOP MODE RAMP
- R 56)STOP RAMP TIME 57)STOP TIME LIMIT 58)LIVE DELAY MODE R 59)DROP-OUT SPEED 60)DROP-OUT DELAY

Operating Function Refer to parameter 168>RUNNING MODE MON	JOG MODE SELECT input level	START input level T33	JOG input level T32	RAMP input total value	Applied Ramp Time	Contactor State
Stopped	low	low	low	reference	Stop ramp	OFF
Stopped	high	low	low	reference	Stop ramp	OFF
Running	low	high	low	reference	Run mode ramp	ON
Crawl	high	high	low	Crawl speed	Run mode ramp	ON
Jog speed 1	low	low	high	Jog speed 1	Jog/slack ramp	ON
Jog speed 2	high	low	high	Jog speed 2	Jog/slack ramp	ON
Slack 1 take-up	low	high	high	ref + slack 1	Jog/slack ramp	ON
Slack 2 take-up	high	high	high	ref + slack 2	Jog/slack ramp	ON

Figure 41 STOP MODE RAMP - block diagram

The following conditions must be true for the main contactor to be energised and remain energised:

- 1. All alarms AND supply synchronisation healthy. (699)READY FLAG).
- CSTOP at 24 V. NOTE: CSTOP must be high for at least 50 ms prior to START and/or JOG going high.
- 3. Start AND/OR Jog high.

When the contactor has energised, the PL/X will run if the RUN input is high **and**, if enabled, the ZERO INTERLOCK is satisfied.

The contactor will de-energise after approximately 100 milliseconds if 699>READY FLAG goes low, or CSTOP goes low.

- If the zero interlock is enabled and requests a non-run action, then the contactor will energise for approximately two seconds, but no current will flow. The contactor will drop out if the zero reference interlock condition is not satisfied within approximately 2 seconds. The display will show CONTACTOR LOCK OUT.
- The contactor will de-energise if START and JOG are both low. In this case, the time taken for the contactor to de-energise depends on the STOP MODE RAMP when stopping from a running mode, or JOG/SLACK RAMP when stopping from a jog mode.

Note these flags are on hidden PINs:

689) IN JOG FLAG	698) HEALTHY FLAG
699)READY FLAG	714) IN SLACK FLAG
720) SYSTEM RESET	pulse

Figure 43 Speed profile when stopping

Figure 44 Contactor drop-out

If START or JOG goes high during the 60>DROP-OUT DELAY time, the contactor stays energised, and the PL/X will restart immediately. The 60>DROP-OUT DELAY timer resets to zero upon restarting, allowing for jogging without the contactor dropping in and out.

11.6.1 Precise stopping

For a precise performance at the ramp endpoints, e. g. stopping, it is advantageous to RESET the SPEED LOOP integrator during the ramping process. Holding it in RESET during the ramping process delivers no undesirable integral term history to interfere with the loop at the end of the ramp.

Achieve this RESET by connecting a JUMPER from 35) RAMPING FLAG to 73>SPEED INT RESET.

Refer to "17.16 CONFIGURATION / JUMPER CONNECTIONS" on page 360.

Ensure that no small demand signals enter the speed loop by disconnecting unwanted inputs to the SPEED REFERENCE SUMMER and setting **67 SPD / CUR RF3 RATIO** to zero - refer to "11.8 CHANGE PARAMETERS / SPEED CONTROL" on page 160.

Also, it may help if **74 SPD ADPT LO BRPNT** is set to 0.2% and **76 JLO BRPNT PRP GAIN** is low (e.g. 5.00) to minimise the effects of tacho noise at the stopping point. Refer to "11.9.2 74) SPD ADPT LO BRPNT" on page 165 and "11.9.4 76) LO BRPNT PRP GAIN" on page 165.

Refer also to "11.15.7.1 Low speed performance" on page 196.

The configuration of the PL/X power terminals using L1/2/3 for stack and EL1/2/3 for field and synchronisation is very versatile, allowing for various main contactor arrangements:

- EL1/2/3 permanently energised with contactor on L1/2/3, gives very fast starting and allows the field to remain energised. (Required for dynamic braking or to prevent condensation in cold climates).
- 2. EL1/2/3 and L1/2/3 energised with the main contactor allow total electrical isolation of the motor.
- The main contactor on DC armature terminals allows for dynamic braking/isolation of the motor.
- 4. Use L1/2/3 at a very low voltage, e. g. using PL/X as a battery charger.

Refer to "7.3 Power wiring methods" on page 52.

11.6.2 56)STOP RAMP TIME

Set the 100-0% down ramp time upon removal of START.

PIN	Parameter description	Range		Default		
56	STOP RAMP TIME	0.1 to 600.0 seconds		10.0 seconds		
A standard 4-quadrant drive can motor and brake in both forward and reverse directions. It can also stop quickly, returning mechanical rotational energy to the		ake in _R o stop / to the ^R	Entry i Change	MENU I PARAMETI	LEVEL ERS	1 2
supply as a lo	using the motor as a generator and the ad.	supply _R		ode Ramp Stop Ramp	P TIME	3

A standard 2-quadrant drive can only motor in the forward direction and cannot regenerate when stopping.

11.6.3 57)STOP TIME LIMIT

Set the maximum time limit before contactor drop-out in Stop mode.

PIN	Parameter description	Range			Default		
57	STOP TIME LIMIT	0.1 to 600.0 seconds		60.0 seconds			
The Start input going low initiates the stop time limit.		R R	ENTRY I CHANGE	Menu Parame:	LEVEL	1	
			R	STOP MO	DDE RAMA STOP TIM	∍ 1E LIMIT	3

11.6.4 58)LIVE DELAY MODE

Enable the drive during the drop-out delay time.

PIN	Parameter description	Range	Default
58	LIVE DELAY MODE	DISABLED ENABLED	DISABLED

Use this to maintain the drive's enabled state whenever the contactor drop-out delay timer is running. For example, when an unwanted external force is trying to rotate the load or when a final shaft positioning routine is operating. Refer to "11.16 CHANGE PARAMETERS / ZERO INTERLOCKS / SPINDLE ORIENTATE" on page 197.

Refer to "11.15 CHANGE PARAMETERS / 7FRO INTERLOCKS" on page 192 for details of other zero speed functions.

Changing this parameter during the drop-out delay time only affects subsequent contactor drop-outs.

R ENTRY MENU LEVEL	1	
--------------------	---	--

- **R** CHANGE PARAMETERS 2
- R STOP MODE RAMP 3

58>LIVE DELAY MODE

11.6.5 59) DROP-OUT SPEED

Set the speed level at which the drop-out delay timer starts.

PIN	Parameter description	Range			Default	t	
59	DROP-OUT SPEED	0.00 to 100.00%			2.00%		
NOTE: With this parameter set to 100%, a STOP command will immediately start the drop-out delay timer. The speed level set by this parameter is			R R	ENTRY I CHANGE	Menu Parame	LEVEL	1 2
symmetrical for forward and reverse rotation.			R	STOP M	ODE RAMA	Þ	3
				R 59)	DROP-OUT	SPEED	
11.6.6 60) DROP-OUT DELAY

Add a time delay to the drop-out command.

60DROP-OUT DELAY0.1 to 600.0 seconds1.0 seconds	PIN	Parameter description	Range	Default
	60	DROP-OUT DELAY	0.1 to 600.0 seconds	1.0 seconds

You can use this function to prevent frequent contactor drop-outs during jogging.

It works by adding a time delay to the function that tells the main contactor to de-energise. The time delay begins when the motor reaches the 59)DROP-**OUT SPEED** threshold. Restarting the PL/X before the contactor finally drops out resets the timer.

If the RUN input goes low during the stopping process, either heading for zero speed or during the delay period, the contactor will drop out straight away, causing the motor to stop.

During the timer sequence, the PL/X inhibits the drive loops to prevent the motor from making small. unwanted movements, Parameter 58)LIVE DELAY **MODE** can override this when a final shaft positioning routine is operating or if the system must maintain power while waiting for drop-out, e.g. for when an unwanted external force is trying to rotate the load, Refer to "11.16 CHANGE PARAMETERS / 7ERO INTERLOCKS / SPINDLE ORIENTATE" on page 197.

Refer to "11.15 CHANGE PARAMETERS / ZERO INTERLOCKS" on page 192 for details of other zero speed functions.

R	ENTRY	MENU	LEVEL	1
---	-------	------	-------	---

CHANGE PARAMETERS 2

3 R STOP MODE RAMP

60) DROP-OUT DELAY

11.7 CHANGE PARAMETERS / SPEED REF SUMMER

The block diagram below shows the signal paths for the speed loop error amplifier. There are four speed reference inputs:

- Motorised potentiometer to 62) INT SPEED REF 1.
- UIP2/T2 to 63) SPEED REF 2.
- UIP3/T3 internally connected to 64) SPEED REF3 MON.
- UIP4/T4 Run mode ramp to 65) RAMPED SPD REF 4.

Connections PIN 62 and 63 may be re-programmed.

The inputs are summed and then subjected to programmable maximum +ve and -ve clamps. The output after the clamps is the final speed reference selected during normal running, which is available to be monitored. During a stop sequence, this resets to zero at the programmed STOP rate. Refer to "11.3 CHANGE PARAMETERS / RUN MODE RAMPS" on page 131 for resetting functions.

The STOP ramp is immediately released when running is resumed. The output after this selection is the speed demand, and this is summed with negative speed feedback to produce a speed error which is then processed in the speed loop P + I error amplifier. This block's output is the current reference sent to the current control blocks during normal running.

Refer to "11.8 CHANGE PARAMETERS / SPEED CONTROL" on page 160.

R	ENTRY	MENU	LEVEL	1

- **R** CHANGE PARAMETERS 2
- R SPEED REF SUMMER 3
 - R 62) INT SPEED REF 1
 - 63)SPEED REF 2 R
 - 64) SPEED REF 3 MON R
 - R 65)RAMPED SPD REF 4
 - 66)SPD/CUR REF3 SIGN R
 - 67)SPD/CUR RF3 RATIO R

64) SPEED REF 3 MON is a monitor of UIP3 only when used as a speed reference and with 97) SPD BYPASS CUR EN disabled. It can be inverted and scaled, or both, if required, and is sampled rapidly to produce a maximum response. Refer to "11.10.11 97)SPD BYPASS CUR EN" on page 174.

NOTE: The STOP command overrides and disables the speed bypass mode, ensuring a controlled stop to zero speed when using the speed bypass mode.

Figure 45 SPEED REF SUMMER - block diagram

11.7.1 62)INT SPEED REF 1

Set the level of internal speed reference 1.

PIN	Parameter description	Range			Defaul	t	
62	INTERNAL SPEED REFERENCE 1	±105.00%			0.00%		
			R	ENTRY I	MENU	LEVEL	1
			R	CHANGE	PARAME	TERS	2
			R	SPEED I	REF SUM	IMER	3
				R 62)	INT SPE	ED REF :	L

11.7.2 63)SPEED REF 2

Set the level of auxiliary speed reference 2.

PIN	Parameter description	Range		Default	:	
63	SPEED REFERENCE 2	±105.00%		0.00%		
			R ENTRY	MENU	LEVEL	1
			R CHANGE	PARAME	TERS	2
			R SPEED	REF SUM	MER	3
			R 63)	SPEED RE	EF 2	
			_			

11.7.3 64)SPEED REF 3 MON

Monitor the level of speed reference 3.

PIN	Parameter description	Range				
64	SPEED REFERENCE 3 MONITOR	±105.00%				
64)SP connec the T3 NOTE: monito	EED REF 3 MON is permanently, internall ted to UIP3 (T3) and functions as a mon input value. Enabling 97)SPD BYPASS CUR EN sets to or to zero. Use 133)ARM CUR DEM MON.	y itor for his	R R R	Entry Menu Change Parame Speed Ref Sumi R _ 64>Speed Re	LEVEL TERS MER EF 3 MON	1 2 3

11.7.4 65)RAMPED SPD REF 4

Monitor of speed reference 4.

PIN	Parameter description	Range		Default	t	
65	RAMPED SPEED REFERENCE 4	±105.00%		0.00%		
		R	ENTRY	MENU	LEVEL	1

- R CHANGE PARAMETERS 2
- R SPEED REF SUMMER 3
 - R 65)RAMPED SPEED REF 4

11.7.5 66)SPD/CUR REF3 SIGN

Invert the speed/current reference 3.

PIN	Parameter description	Range		Default	t	
66	SPEED/CURRENT REFERENCE 3 SIGN	INVERT NON-INVERT		NON-IN	IVERT	
		R	ENTRY I	MENU	LEVEL	1
		R	CHANGE	PARAME	TERS	2
		R	SPEED I	REF SUM	MER	3

R 66)SPD/CUR REF3 SIGN

11.7.6 67)SPD/CUR REF3 RATIO

Set a scaling factor for speed/current reference 3.

PIN	Parameter description	Range			Defaul	t	
67	SPEED/CURRENT REFERENCE 3 RATIO	±3.0000			1.0000		
The inf 3 MON may be setting	ternal connection from UIP3 to 64>SPEE is permanent. However, 64>SPEED REF e disconnected from the SPEED REF SUM ; 67>SPD / CUR RF3 RATIO to 0.0000.	D REF 3 MON MER by	R R R	ENTRY CHANGE SPEED R 67>S	Menu : Parame Ref Sum SPD/Cur	LEVE TERS MER REF3	EL 1 2 3 RATIO

11.8 CHANGE PARAMETERS / SPEED CONTROL

Parameter adjustment of the speed loop error amplifier is available via this menu and the SPEED PI ADAPTION sub-menu.

The SPEED CONTROL menu refers to the block diagram below, starting after the second summing junction:

The summed value of all the references is subject to a maximum +ve and -ve clamp. The stop mode ramp block then superimposes a ramp to zero at a programmed rate on the prevailing input signal during a stop command.

When a run command is received, the output immediately assumes the level then prevailing at the input. This level will normally also be zero, providing the run mode ramp block has also been reset. The signal is then compared with the speed feedback, and processed by the speed loop error amplifier.

The simple PI gain and time constants are adjustable in this menu. Go to the SPEED PI ADAPTION sub-menu to refine them further. The signal then output from the error amplifier represents the current reference.

The speed bypass change-over switch then selects this current reference for output. However, if the speed bypass mode is enabled, then input reference 3 is selected.

NOTE: The default values in this menu are suitable for tacho or encoder feedback. AVF feedback usually contains more ripple than tacho or encoder feedback, so it is advisable to reduce the SPEED CONTROL loop gains whenever AVF or ENCODER + ARM VOLTS feedback is selected. Refer to "11.8.3 71)SPEED PROP GAIN" on page 162.

In the case of AVF, we suggest the values for the following parameters are changed as follows:

- "11.8.3 71)SPEED PROP GAIN" on page 162 set to 7.00.
- "11.9.7 79)SPD ADAPT ENABLE" on page 166 set to DISABLED.

These are the suggested starting points for smooth, responsive control. However, it may be possible to make further improvements with experimentation.

ENTRY MENU 1 LEUEL

- CHANGE PARAMETERS 2
- R SPEED CONTROL 3
 - 69)MAX POS SPEED REF R
 - 70)MAX NEG SPEED REF R
 - 71) SPEED PROP GAIN R
 - D 72)SPEED INT T.C. 73)SPEED INT RESET SPEED PI ADAPTION 4

Figure 46 SPEED CONTROL - block diagram

11.8.1 69)MAX POS SPEED REF

Set the positive limit level of total speed reference.

PIN	Parameter description	Range		Default	t	
69	MAXIMUM POSITIVE SPEED REFERENCE	0.00 to +105.00)%	105.00%	6	
		R	ENTRY I	MENU	LEVEL	1
		R	CHANGE	PARAME	TERS	2
		R	SPEED (CONTROL		3

11.8.2 70) MAX NEG SPEED REF

Set the negative limit level of total speed reference.

PIN	Parameter description	Range		Default	t	
70	MAXIMUM NEGATIVE SPEED REFERENCE	0.00 to -105.00%		-105.00%		
		R	ENTRY	MENU	LEVEL	1
		R	CHANGE	PARAME	TERS	2
		R	SPEED	CONTROL		3
			R 70)	1AX NEG	SPEED	REF

11.8.3 71)SPEED PROP GAIN

Set the proportional gain of the speed loop error amplifier.

PIN	Parameter description	Range	Default
71	SPEED PROPORTIONAL GAIN	0.00 to 200.00	15.00

Increase proportional gain to improve the response time. However, excessive values may cause instability.

R	ENTRY MENU	LEVEL	1
R	CHANGE PARA	METERS	2

R 69)MAX POS SPEED REF

R SPEED CONTROL 3

R 71)SPEED PROP GAIN

11.8.4 72)SPEED INT T.C.

Set the integral time constant of the speed loop error amplifier.

72 SPEED INTEGRAL TIME CONSTANT 0.001 to 30.000 1.000 seconds	Default	Range	Parameter description	PIN
seconds	1.000 seconds	0.001 to 30.000 seconds	SPEED INTEGRAL TIME CONSTANT	72

Match this to the mechanical time constant of the motor/load combination. Generally, an increased integral time will slow the response.

R	ENTRY	MENU	LEVEL	1
---	-------	------	-------	---

- R CHANGE PARAMETERS 2
- R SPEED CONTROL 3
 - R 72>SPEED INT T.C.

11.8.5 73)SPEED INT RESET

Enable to reset the integrator.

PIN	Parameter description	Range	Default
73	SPEED INTEGRATOR RESET	DISABLED ENABLED	DISABLED

Set to ENABLED to reset the integrator, leaving only the proportional gain element of the speed loop amplifier active.

R	ENTRY	MENU	LEVEL	1

R CHANGE PARAMETERS 2

R SPEED CONTROL

73)SPEED INT RESET

3

11.9 CHANGE PARAMETERS / SPEED CONTROL / SPEED PI ADAPTION

You can modify the gains of the proportional and integral terms set in the SPEED CONTROL menu.

In this menu, you can enter the low to high values of gain change to be applied linearly between selectable low and high breakpoints as a percentage of the speed loop error provided by the SPEED CONTROL menu. (The breakpoints work symmetrically for each polarity of error.)

The low breakpoint is the starting level for gain changing, and the high breakpoint is the finishing level:

- Below the low breakpoint, the terms are set in this sub-menu by parameters 76>LOW BRPT PRP GAIN and 77>LOW BRPT INT T.C.
- Above the high breakpoint, the terms are set in the SPEED CONTROL menu by parameters 71>SPEED PROP GAIN and 72>SPEED INT T.C.

The most frequently encountered requirement is for the gain term of the speed loop error amplifier to be high for large speed errors and low for small.

A decreasing gain with error is also possible by choosing appropriate term values in this menu and the SPEED CONTROL menu.

11.9.1 Using small speed inputs

Applications requiring precise control at very low speeds, e.g. positioning, may function better with SPEED PI ADAPTION disabled as default settings deliver low gain for small errors giving smooth running at speed. Alternatively, modify the parameters to provide a higher gain for small errors- refer to "11.15.7.1 Low speed performance" on page 196.

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R SPEED CONTROL

SPEED PI ADAPTION 4

3

74)SPD ADPT LO BRPNT 75)SPD ADPT HI BRPNT 76)LO BRPNT PRP GAIN 77)LO BRPNT INT T.C. 78)INT % DURING RAMP 79)SPD ADAPT ENABLE

When enabled by parameter **79>SPD ADAPT ENABLE**, the default values in this SPEED PI ADAPTION sub-menu are:

Proportional gain: 5 for errors below 1.00% 15 for errors above 2.00%

Chosen as a starting point, this results in a linear change from 5 to 15 between 1.00% and 2.00%. These default settings will deliver lower gain with low error to give smooth running at speed.

Figure 47 Graph showing adaption profile for default values

11.9.2 74)SPD ADPT LO BRPNT

Set the low breakpoint for the commencement of gain change.

PIN	Parameter description	Range		Default	t	
74	SPEED ADAPTION LOW BREAKPOINT	0.00 to 100.009	%	1.00%		
		R	ENTRY I	MENU	LEVEL	1
		R	CHANGE	PARAME	TERS	2
		R	SPEED	CONTROL		3
			SPEED I	PI ADAP	TION	4
			74>9	SPD ADP1	LO BRP	NT

11.9.3 75)SPD ADPT HI BRPNT

Set the high breakpoint for the end of linear gain change.

PIN	Parameter description	Range		Default	:	
75	SPEED ADAPTION HIGH BREAKPOINT	0.00 to 100.000	%	2.00%		
		R	ENTRY	MENU	LEVEL	1
		R	CHANGE	PARAMET	ERS	2
		R	SPEED	CONTROL		3
			SPEED	PI ADAPI	ION	4
			75)	SPD ADPT	HI BRP	'NT

11.9.4 76)LO BRPNT PRP GAIN

Set the proportional gain of the speed loop error amplifier below the low breakpoint.

PIN	Parameter description	Range		Default	:	
76	LOW BREAK PROPORTIONAL GAIN	0.00 to 200.00		5.00		
		R	ENTRY I	MENU	LEVEL	1
		R	CHANGE	PARAMET	TERS	2
		R	SPEED (CONTROL		3
			SPEED I	PI ADAPI	TION	4
			_76)L	0 BRPNT	PRP GA	IN

11.9.5 77)LO BRPNT INT T.C.

Set the integral time constant below the low breakpoint.

PIN	Parameter description	Range		Defaul	t	
77	LOW BREAKPOINT INTEGRAL TIME CONSTANT	0.001 to 30.000 seconds)	1.000 s	econds	
		R	ENTRY 1	MENU	LEVEL	1
		R	CHANGE	PARAME	TERS	2
		R SPEED		CONTROL		3
			SPEED F	PI ADAP	TION	4
			_77)L	O BRPN1	INT T	.c.

11.9.6 78)INT % DURING RAMP

Set the integral time constant % scaler if RAMPING flag is high.

PIN	Parameter description	Range			Default	t	
78	INTEGRAL % DURING RAMP	0.00 to 100.	00%	6	100.009	%	
This parameter does not reset the integrator but merely alters the % of integration.			R	ENTRY I	MENU	LEVEL	1
			R	CHANGE	PARAME	TERS	2
Refer a	Refer also to "11.6.1 Precise stopping" on page 152.		R	SPEED (CONTROL		3
				SPEED I	PI ADAP	TION	4
				78)]	(NT % DU	JRING RA	AMP

11.9.7 79)SPD ADAPT ENABLE

Enable the mode that varies the terms between breakpoints.

PIN	Parameter description	Range		Default			
79	SPEED ADAPTION ENABLE	DISABLED ENABLED			DISABI	ED	
			R	ENTRY I	MENU	LEVEL	1
			R	R CHANGE PARAMETERS R SPEED CONTROL SPEED PI ADAPTION		TERS	2
			R				3
						TION	4
				79)9	SPD ADA	PT ENABL	E

11.10 CHANGE PARAMETERS / CURRENT CONTROL

The current control menu looks complex but is not too difficult to understand when considered as separate blocks.

Refer to "Figure 48 CURRENT CONTROL: block diagram" on page 168.

The current control loop gets its current reference from the output of the speed loop error amplifier.

The reference enters the current control section and is subject to a series of four clamps:

- 3) CURRENT LIMIT(%). This provides the 1. absolute limits of overload. (Refer to "11.1 CHANGE PARAMETERS/CALIBRATION" on page 114).
- 2. CURRENT OVERLOAD. This sub-menu allows the PL/X to modify the current overload actively. The overload reduction rate is adjustable. After overload, the load must return below the target level for an equivalent time to re-enable the overload capability.
- 3. I DYNAMIC PROFILE. Use this sub-menu to protect motors with problems commutating current at high speeds in field weakening mode of operation. This function allows the setting of breakpoints that profile the current according to the motor speed.
- 89) UPPER CUR CLAMP and 90) LOWER CUR 4. **CLAMP**. These clamps adjust the current limits from the external signals. They accept a single positive input and produce a scaled bipolar clamp or separate positive and negative inputs for the upper clamp and lower clamp. Scaling is achievable by a master current scaler.

The four clamps operate such that the lowest has priority. The actual prevailing clamp level is available as a diagnostic for +ve and -ve current.

The output of the clamping stage becomes the Current Demand Input that the PL/X compares to the armature current feedback in a P + I error amplifier. The control terms and a non-linear adaptive algorithm are available for programming. There is also the facility for an improved smallsignal current response. Refer to "17.19.2 678) MAX CUR RESPONSE" on page 365.

The output becomes the phase angle demand for the thyristor stack.

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R CURRENT CONTROL 3
- R 81)CUR CLAMP SCALER CURRENT OVERLOAD 4 I DYNAMIC PROFILE 4 88) DUAL I CLAMP ENBL 89) UPPER CUR CLAMP 90)LOWER CUR CLAMP 91)EXTRA CUR REF 92) AUTOTUNE ENABLE 93)CUR PROP GAIN R R 94)CUR INT GAIN
- R 95)CUR DISCONTINUITY
- 96)4-QUADRANT MODE R 97)SPD BYPASS CUR EN 98)ARM FIR.FRNT STOP

IMPORTANT:

Repeat the AUTOTUNE routine if you change your supply voltage, current calibration, or motor type. This will:

- Re-adjust 93)CUR PROP . GAIN
- Re-adjust 94)CUR INT GAIN
- Re-adjust 95)CUR DISCÓNTINUITY

Figure 48 CURRENT CONTROL: block diagram

11.10.1 81)CUR CLAMP SCALER

Set the clamp scaling value for the upper/lower clamps.

PIN	Parameter description	Range		Default	;	
81	CURRENT CLAMP SCALER	0.00 to 150.00%	6	150.00%	6	
		R	ENTRY I	MENU	LEVEL	1
		R	CHANGE	PARAMET	TERS	2
		R	CURRENT	T CONTRO)L	3
			R 81)0	OR CLAM	IP SCALER	2

11.10.2 88)DUAL I CLAMP ENBL

Enable the upper and lower dual clamps to be independent.

	PIN	Parameter description	Range		Default		
	88	DUAL CURRENT CLAMP ENABLE	DISABLED ENABLED		DISABLE	D	
	If 88) DUAL I CLAMP ENBL is disabled, then 89) UPPER CUR CLAMP produces symmetrical positive and negative current limits in conjunction with 81) CUR CLAMP SCALER.			ENTRY N CHANGE	1ENU PARAMET CONTRO	LEVEL ERS L	1 2 3
If 88)DUAL I CLAMP ENBL (default terminal T21) is enabled, then 89)UPPER CUR CLAMP controls the positive and 90)LOWER CURRENT CLAMP controls the negative current limits in conjunction with 81)CUR CLAMP SCALER.		1) is the bls the C UR	88)[UAL I CI	lamp e	ENBL	
	Each cl upper i	amp can work in each polarity, provided s algebraically above the lower. Howeve	the r:				

- With the upper clamp set to negative and the lower clamp set to positive, the result is 0.00%.
- If the value for the lower clamp is a higher positive number than the upper clamp in the positive region, then the upper clamp behaves as a current demand.
- If the value for the upper clamp is a more negative number than the lower clamp in the negative region, then the lower clamp behaves as a current demand.

11.10.3 89)UPPER CUR CLAMP

Modify the upper current limit percentage.

PIN	Parameter description	Range	Default
89	UPPER CURRENT CLAMP	±100.00%	+100.00%

The product of this parameter and 81>CUR CLAMP SCALER sets the limit.

With the upper clamp set to negative and the lower clamp set to positive, the result is 0.00%.

R	ENTRY	MENU	LEVEL	1

R CHANGE PARAMETERS 2

R CURRENT CONTROL 3

89)UPPER CUR CLAMP

11.10.4 90)LOWER CUR CLAMP

Modify the lower current limit percentage.

PIN	Parameter description	Range			Default	t	
90	LOWER CURRENT CLAMP	±100.00%			-100.00	%	
The pro SCALE With th clamp	oduct of this parameter and 81 CUR CLA R sets the limit. The upper clamp set to negative and the lo set to positive, the result is 0.00%.	amp ower	R R R	ENTRY CHANGE CURREN 90>1	MENU PARAME T CONTRO LOWER CU	LEVEL TERS DL JR CLAMP	1 2 3

11.10.5 91)EXTRA CUR REF

Set the value of an extra current reference input.

PIN	Parameter description	Range			Defaul	t	
91	EXTRA CURRENT REFERENCE	±300.00%			0.00%		
			R	ENTRY 1	MENU	LEVEL	1
			R	CHANGE PARAMETERS		ETERS	2
			R			:0L	3
				91)E	XTRA C	UR REF	

11.10.6 92)AUTOTUNE ENABLE

Enable the Autotune routine.

PIN	Parameter description	Range	Default
92	AUTOTUNE ENABLE	DISABLED ENABLED	DISABLED

When ENABLED, the Autotune routine operates once the main contactor energises and the PL/X runs. Typically, Autotuning can take from a few seconds to one minute to complete.

- Autotune is a static test.
- There is no need to disconnect the motor from the load.
- The motor field is automatically disabled.
- If the motor back emf is detected to be above a certain level implying excessive rotation, Autotune aborts.
- Completing the Autotune routine forces the main contactor to drop-out, and AUTOTUNE ENABLE to reset to DISABLED.

After the Autotune routine completes, save the new parameter settings using the **PARAMETER SAVE** menu.

NOTE: The Autotune routine makes a one-off adjustment to the current loop error amplifier terms to achieve optimum performance.

There are two stages to the Autotune routine:

Stage 1: The current automatically increases in the positive until it becomes continuous.

Stage 2: The current demand is automatically perturbated in the continuous current region while the current loop response is optimised.

If the routine is interrupted by a power loss or alarm then it is aborted, and the existing parameter values are left intact

If the motor has a short time constant, the armature current may remain discontinuous, even at a current above 100%. There are two possible outcomes:

1. The Autotune will find that the current never goes continuous up to 150% in Stage 1. It abandons Stage 2. The Autotune automatically sets the following parameters: 93) CUR PROP GAIN is set to 1.00. 94) CUR INT GAIN is set to 7.00. 95) CURRENT DISCONTINUITY is set to 0.00%.

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R CURRENT CONTROL 3

92) AUTOTUNE ENABLE

Repeat the AUTOTUNE routine if you change your supply voltage, current calibration, or motor type.

IMPORTANT:

If the maximum motor armature current rating is less than approximately 50% of the maximum model rating, the AUTOTUNE results may not be optimum.

There are two ways of overcoming this:

Set the current loop 1. control terms manually. Refer to "11.10.9 95) CUR DISCONTINUITY" on page 173.

or

2. Re-burden the PL/X using the 50% / 100% burden jumper on the power board. Refer to "17.19.3 680)Iarm BURDEN OHMS" on page 365.

The CHANGE PARAMETERS menu

2. The Autotune will find that the current goes continuous at a high level in Stage 1. During Stage 2, the induced current demand perturbations cause a current overload to occur, and the Autotune then aborts, leaving the existing parameter values intact. In this case, we suggest setting the following parameters manually: 93) CUR PROP GRIN is set to 1.00. 94) CUR INT GAIN is set to 7.00.

95) CURRENT DISCONTINUITY is set to 0.00%.

Although this is a good starting point, the current loop response may be slow when the armature current is high (above the discontinuous current level).

NOTE: There is a hidden PIN which contains 707) AUTOTUNE MONITOR flag (High for start).

Refer to Page 238 - CANNOT AUTOTUNE, and Page 239 - AUTOTUNE QUIT.

11.10.7 93)CUR PROP GAIN

Set the proportional gain of the current error amplifier.

PIN	Parameter description	Range			Defaul	t	
93	CURRENT PROPORTIONAL GAIN	0.00 to 200.0	0		30.00		
Performing an Autotune will set the Proportional Gain. You can increase the proportional gain to improve response. However, too much may cause instability.			R R	entry Change	Menu Parame	LEVEL	1
			R	CURREN	T CONTR	OL	3
			I	R 93 א	CUR PROP	° GAIN	

11.10.8 94)CUR INT GAIN

Set the integral gain of the current error amplifier.

PIN	Parameter description	Range		Defau	lt	
94	CURRENT INTEGRAL GAIN	0.00 to 200.00)	3.00		
Performing an Autotune will set the Integral Gain.			ENTRY	/ MENU	LEVEL	1
respor	ise.	R	CHANC	ie parame	ETERS	2
		R	CURRE	ENT CONTR	ROL	3
			R 94	CUR INT	GAIN	

11.10.9 95)CUR DISCONTINUITY

Set the discontinuous current boundary level of the motor.

PIN	Parameter description	Range	Default	
95	CURRENT DISCONTINUITY	0.00 to 200.00%	13.00%	

Performing an Autotune will set this parameter. The motor/supply combination will possess a property called the discontinuous-continuous current point that is important for the optimum tuning of the current loop.

11.10.9.1 Setting the current loop control terms manually

As the current increases, the pulses in the waveform join together and become continuous. At this point, the natural gain of the system changes dramatically. If the PL/X knows this point, it can automatically compensate for the gain change and produce an optimum response.

Here you are entering the current level % of rated motor current at which it occurs. If you change your supply voltage, current calibration, or motor type, you must adjust the three values for PINs 93/94/95 accordingly.

To observe the current signal, you must use the signal test pin we provide on the PL/X and a quality storage oscilloscope.

Refer to "12.3.2 134)ARM CUR % MON" on page 210 to monitor the percentage value at the boundary.

Refer to the table below to determine the other current loop control terms.

R	ENTRY	MENU	LEVEL	1
••				-

R CHANGE PARAMETERS 2

R CURRENT CONTROL 3

R 95)CUR DISCONTINUITY

134)ARM CUR % MON at boundary point	Suggested value for 93)CUR PROP GAIN	Suggested value for 94)CUR INT GAIN
10.00%	40.00	4.00
20.00%	20.00	2.00
40.00%	10.00	1.00
60.00%	10.00	1.00
80.00%	10.00	1.00
100.00%	10.00	1.00

11.10.10 96)4-QUADRANT MODE

Allow models with regenerative capabilities to be 2-quadrant.

PIN	Parameter description	Range	Default	
96	4-QUADRANT MODE	DISABLED ENABLED	ENABLED	
If 96)4	4-QUADRANT MODE is ENABLED, then the		MENII LEUFI	1

regenerative capability will be determined by the model.

Refer to "10 Technical specifications" on page 91.

97)SPD BYPASS CUR EN 11.10.11

Enable a current reference input to by-pass the speed loop.

PIN	Parameter description	Range	Default	
97	SPEED BYPASS CURRENT ENABLE	DISABLED ENABLED	DISABLED	
There	is an internal connection from T3 via UIF	² 3 to 64)	MENU LEV	JEL 1

SPEED REF3 MON.

This parameter determines whether T3 is a speed or current reference. If ENABLED, the speed loop output is automatically disconnected.

NOTE: Enabling this parameter sets 64) SPEED REF 3 MON to zero. Use 133) ARM CUR DEM MON.

NOTE: The summing junction for this input is shown in "Figure 46 SPEED CONTROL - block diagram" on page 161.

98)ARM FIR.FRNT STOP 11.10.12

Set the the minimum firing delay.

PIN	Parameter description	Range			Default	:	
98	ARMATURE FIRING FRONT STOP	0 - 15000			624		
Scaling: 16384 = 210 degrees, or each bit is 0.012817° (624 = 8°).		12817° _r	EN	rry M Ange	1enu Paramet	LEVEL	. 1 2
() trana		R	CUI	RRENT	CONTRO		3 STOP

R CHANGE PARAMETERS 2 CURRENT CONTROL 3 R 97)SPD BYPASS CUR EN

R CHANGE PARAMETERS

96)4-QUADRANT MODE

R CURRENT CONTROL

R

2

11.11 CHANGE PARAMETERS / CURRENT CONTROL / CURRENT OVERLOAD

The CURRENT OVERLOAD menu allows you to set the current % target limit.

It is usually the full-load current of the motor.

Having the facility to set this parameter independently of **2**>**RATED ARM AMPS** allows further flexibility.

This block allows for load currents of up to 150% of **2>RATED ARM AMPS**. (If any other lower limits are prevailing, they will, of course, determine the current limit). Refer to "Figure 48 CURRENT CONTROL: block diagram" on page 168.

The table below shows maximum overloads according to full load motor current, as a % of 2>RATED ARM AMPS.

Refer to "11.11.1.1 Achieving overloads >150%" on page 177.

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R CURRENT CONTROL 3
- CURRENT OVERLOAD 4

82>0/LOAD % TARGET

Full load motor current [82)O/LOAD % TARGET] as a % of 2)RATED ARM AMPS	Maximum available	Maximum overload % available (with respect to full load motor current)	
100	150%	150 / 100 = 150%	
90%	150%	150 / 90 = 166%	
80%	150%	150 / 80 = 187%	
75%	150%	150 / 75 = 200%	
60%	150%	150 / 60 = 250%	
50%	150%	150 / 50 = 300%	
37.5%	150%	150 / 37.5 = 400%	
30%	150%	150 / 30 = 500%	

There are two overcurrent trip mechanisms:

- 1. A software threshold which is set at 300% of **2)RATED ARM AMPS**.
- 2. A hardware threshold which activates in excess of 150% of the maximum PL/X model rating.

Autotune with **2)RATED ARM AMPS** set to its final value. See the example below for a 9 A motor:

Set 8.1.8.2 STALL TRIP MENU / Stall current level PIN 179 to a value less than 82> 0 \times LOAD \times TARGET.

If 3)CURRENT LIMIT(%) or 82)0 / LOAD % TARGET level is set to 0%, then no current will flow.

Table 11 Maximum Overload Table

11.11.1 82)O/LOAD % TARGET

Set the current limit target level after excessive load.

PIN	Parameter description	Range	Default
82	OVERLOAD % TARGET	0.00 to 105.00%	105.00%

An internal integrator with a finite capacity fills up when the armature current exceeds PIN 82 (82)0/ LOAD **X** TARGET). It empties for armature current less than PIN 82. The unused capacity of the integrator determines the time remaining before automatic reduction of the current limit commences. A 150% limit is available until the integrator becomes full. Then the current limit is linearly reduced in this block from 150% towards PIN 82. **NOTE:** The limit reduction always starts from 150% and ramps down towards 82)0 / LOAD X TARGET. Refer to "11.11.2 83)O/LOAD RAMP TIME" on page 178.

If the load continues to require current above the target level for PIN 82, then it is limited to the PIN 82 level. (**NOTE**: This implies the speed loop is not getting the current demanded, hence, there will be a speed error).

If the load required subsequently falls beneath the PIN 82 target level, then the internal integrator starts to de-integrate back to its empty state (ready for another overload). The overload capacity available will begin to increase. However, full de-integration is required before the maximum overload capacity is available once more.

R ENTRY MENU LEVEL 1

CHANGE PARAMETERS 2

R CURRENT CONTROL 3

CURRENT OVERLOAD

4

82>0/LOAD % TARGET

NOTE: For small overloads, it may take a long time for the integrator to fill. However, filling the 150% limit will quickly result in the current limit reducing to the PIN 82 level.

Formula for calculating Dwell time for a given PIN82 Overload % target and PIN138 prevailing Current Limit%: DWELL TIME = (150%-PIN82%) x 25/(I limit%-PIN82%) in seconds. (Assuming current remains at the limit).

Formula for calculating Current limit setting required for a given PIN82 Overload % target and DWELL TIME: Current limit% required = PIN82% + (150% - PIN82%) x 25/DWELL TIME secs

Formula for calculating PIN82 Overload % target required for a given Current limit% and DWELL TIME: PIN82 Overload % target = (DWELL TIME secs x Current limit% - 3750) / (DWELL TIME secs - 25)

Figure 49 O/LOAD % TARGET set to 105%

11.11.1.1 Achieving overloads >150%

Use this to provide higher overload percentages on motors with a smaller rating than the PL/X model. The example below shows how parameter **82>0 < LOAD % TARGET** delivers a 200% overload for a 9 A motor using a 12 A PL/X5:

- 1. For the PL/X5, a setting of 100% in **2)RATED ARM AMPS** represents 12 A, the drive's full-load motor current. Usually, you set a value suitable for the motor in this case, 75% for a 9 A motor. But for this application, we deliberately set it to 12 A.
- Set parameter 82>0 < LOAD × TARGET to a level that is equivalent to the motor's full load motor current of 9 A. In this case, set it to 75% (of 12 A, as set in 2>RATED ARM AMPS).
- 18 A (the 150% maximum available limit for the 12 A PL/X5) is now double the 82>0
 LOAD % TARGET (75%) and so provides a 200% overload capability with respect to the full load motor current (9 A).
- 4. Perform an Autotune with **2>RATED ARM AMPS** set at 12 A. Refer to "11.10.6 92) AUTOTUNE ENABLE" on page 171.
- Set 179)STALL CUR LEVEL to a value less than 82>0 < LOAD × TARGET, currently 75%. The default for this parameter is 95%, so in this case, set it to 71.25%. Refer to "13.2.2 179)STALL CUR LEVEL" on page 233.

Figure 50 How to achieve overloads greater than 150%

11.11.2 83)O/LOAD RAMP TIME

Set the time taken to reduce the current limit by 100%.

PIN	Parameter description	Range		Default	:	
83	OVERLOAD RAMP TIME	0.1 to 20.0 sec	onds	20.0 sec	conds	
For exa	ample, if:	R	ENTRY N	IENU	LEVEL	1
	Current Limit = 150%	R	CHANGE	PARAMET	ERS	2
	83>0/LOAD RAMP TIME = 20 seconds	R	CURRENT	CONTRO)L	3
	82>0/LOAD % TARGET = 105%		CURRENT	OVERLO)ad	4
Then r minus	amp time to target = 9 seconds (i.e. 45% 105] of 20 seconds).	[150	83>0	∕LOAD R	AMP TIM	Е

11.12 CHANGE PARAMETERS / CURRENT CONTROL / I DYNAMIC PROFILE

NOTE: This function works for rotation in both directions.

Use this clamp to change the current limit according to speed. For example:

- 1. To protect motors that have problems commutating current at high speeds in field weakening mode of operation.
- 2. To prevent motors overheating at low speeds.

The calculation uses an upper current limit with a fixed value of 150%.

- The setting for 3)CURRENT LIMIT(%) will prevail if it is less than 150%.
- If the limits in the other current limit blocks are lower, then they will prevail.
- R ENTRY MENU LEVEL 1
 R CHANGE PARAMETERS 2
 R CURRENT CONTROL 3
 I DYNAMIC PROFILE ABBLE
 84) I PROFILE ENABLE
 85)SPD BRPNT AT HI I
 86)SPD BRPNT AT LO I
 87)CUR LIMIT AT LO I

NOTE: You can set the SPEED breakpoints so that the profile starts low and goes high if required. If you try to bring the two speed breakpoints closer than within 10% of each other, then the higher speed breakpoint is internally assumed to be equal to the lower speed breakpoint plus 10%.

Figure 51 I DYNAMIC PROFILE

11.12.1 84)I PROFILE ENABLE

Enable the dynamic profile function.

PIN	Parameter description	Range	Default
84	CURRENT PROFILE ENABLE	DISABLED ENABLED	DISABLED

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R CURRENT CONTROL 3
 - I DYNAMIC PROFILE 4
 - 84)I PROFILE ENABLE

11.12.2 85)SPD BRPNT AT HI I

Set the speed breakpoint for 150% CURRENT LIMIT.

PIN	Parameter description	Range	Default			
85	SPEED BREAKPOINT AT HIGH CURRENT	0.00 to 105.00%	75.00%			
NOTE: The setting for 3)CURRENT LIMIT(%) set in the R ENTRY MENU LEVEL 1						

CALIBRATION menu will prevail. It is the normal current limit setting. However, the profile calculation starts or ends at 150%.

R	ENIRY	MENU	LEVEL	1

- R CHANGE PARAMETERS 2
- R CURRENT CONTROL 3
 - I DYNAMIC PROFILE 4
 - 85>SPD BRPNT AT HI I

11.12.3 86)SPD BRPNT AT LO I

Set the speed breakpoint for 87>CUR LIMIT AT LO I.

PIN	Parameter description	Range		Defaul	t	
86	SPEED BREAKPOINT AT LOW CURRENT	0.00 to 105.00%		100.00%		
		R	ENTRY M	IENU	LEVEL	1
		R	CHANGE	PARAME	TERS	2
		R	CURRENT	CONTR	OL	3
			I DYNAM	IIC PRO	FILE	4
			_86)S	PD BRPI	NT AT LO	I

11.12.4 87)CUR LIMIT AT LO I

Set the current limit prevailing at 86>SPEED BRPNT AT LO I.

PIN	Parameter description	Range	Default
87	CURRENT LIMIT AT LOW CURRENT	0.00 to 150.00%	100.00%

R	ENTRY	MENU	LEVEL	1

- R CHANGE PARAMETERS 2
- R CURRENT CONTROL 3
 - I DYNAMIC PROFILE 4

87)CUR LIMIT AT LO I

11.13 CHANGE PARAMETERS / FIELD CONTROL

The field controller within the PL/X consists of a singlephase, half-controlled thyristor bridge with a flywheel path. Terminals EL2 and EL3 deliver the AC supply to the bridge, and the rectified output appears at terminals F+ and F-. The supply can be anywhere in the range of 100 to 500 Vac but must be at least 1.1 times the maximum field output voltage you require. Note that the supply to EL2 and EL3 also determines the phase rotation of the local supply.

The purpose of the field winding in a motor is to provide flux that intersects the armature windings. The flux generated is a function of the CURRENT flowing in the field coils. When considering the set-up of the field output, you can use one of two kinds of control strategy:

- Voltage Output Clamp with higher current limit 1 protection.
- Current Control with higher voltage clamp 2. protection.

Motor field windings are usually very inductive, with a long time constant resulting in a smooth current in the field. Therefore, the field current reading is reasonably accurate irrespective of when sampled.

However, some motor field winding time constants are shorter than usual, resulting in up to 20% ripple. In this case, the PL/X may sample the current at a non-ideal point in the cycle, which results in a slightly incorrect control level (usually no more than a few per cent). If required, you can normalise the field current to a proper level using the field current trim (refer to "11.1.10 15)FIELD CUR FB TRIM" on page 123) or recalibrate the field current to overcome the inaccuracy.

Voltage Output Clamp

This open-loop setting of the field bridge firing angle allows the DC output voltage setting to be between 0 and 90% of the incoming supply voltage. For example, for an AC supply of 400 V, the 90% output voltage is 360 Vdc. Note that if the AC supply varies, then the field output voltage will vary in proportion. Also, if the field resistance changes, then the resulting output current will change.

If you know the rated field voltage you can set the 100) FIELD VOLTS OP % clamp parameter value in this menu. Adjust the field output voltage to the data plate value as a percentage of the applied AC supply.

- R ENTRY MENU LEVEL 1
- CHANGE PARAMETERS 2 R
- R FIELD CONTROL 3
 - R 99)FIELD ENABLE
 - 100)FIELD VOLTS OP % R 101)FIELD PROP GAIN 102)FIELD INT GAIN FLD WEAKENING MENU 4 111)STANDBY FLD ENBL 112)STANDBY FLD CUR 113)FLD QUENCH DELAY 114)FIELD REFERENCE

WARNING: Field reversal or disconnection.

After the PL/X inhibits the field output, it can take several seconds for the field current to decay to zero due to the high inductance of motor fields.

Do not open-circuit the field unless the field current has reached zero.

You cannot use the field current monitors or field active flag to confirm that zero current is flowing because the PL/X cannot measure the decaying current after an inhibit. You must:

- 1 Observe the current on an external instrument and time how long it takes to decay.
- 2. Use the interval timer block to implement a safety delay before opening the field circuit.

Failure to observe this warning may cause flashover of the field circuit and result in damage to the system.

NOTE: Please ensure that **4)RATED FIELD AMPS** is sufficiently high to force the **100>FIELD VOLTS OP *** clamp into operation at the desired voltage under all conditions.

4)RATED FIELD AMPS, scaled by **114)FIELD REFERENCE**, sets the demand for the field current control loop. **100)FIELD VOLTS OP 4** operates as a clamp on the field bridge firing angle. If the current demand is satisfied at a voltage output below the clamp level, then the current loop will prevail.

Current Control (preferred control strategy)

In this mode, the output voltage range is the same as in the voltage output clamp mode. However, the control loop operates on the actual current flowing in the field and works to maintain this at the desired value. The motor back emf is a linear representation of its speed, and this is improved if the field current and hence flux is kept constant. Consequently, with the field in current control mode, AVF speed control accuracy is improved. It is good practice in control engineering to minimise the error correction requirements of any loop, so also having a current-controlled field is recommended when using a tachogenerator.

Field weakening in current mode is required when the desired maximum speed of the motor exceeds its base speed. The field current is held at its rated value until the armature voltage reaches its spillover value. Reducing the field current rather than increasing the armature voltage then satisfies any further increase in speed demand. When considering the field quenching modes, the field must be present after removing the drive armature output if dynamic braking is required. Without the field, the motor could not act as a generator and dissipate its rotational energy into the braking resistor.

When motors are standing still for extended periods, it is wise to apply a reduced field current to prevent overheating, save energy, and prevent condensation or freezing in cold climates.

The field quenches during any non-running mode. A RUN input going low during the stopping process, either heading for zero speed or during the delay period, drops out the contactor straight away and quenches the field. Parameters 111>STANDBY FIELD ENBL, 112>STANDBY FLD CUR and 113>FLD QUENCH DELAY determine the quench condition.

Refer to "Figure 34 Wiring diagram for AC supply level to L1/2/3 different to EL1/2/3 (e.g. low voltage field)" on page 107.

11.13.1 99)FIELD ENABLE

Enable/disable the field output.

PIN	Parameter description	Range	Default
99	FIELD ENABLE	DISABLED ENABLED	ENABLED
NOTE:	Disabling the field control will automati	cally p cutou	

inhibit the field fail alarm.

R	ENTRY MENU	LEVEL	1
R	CHONGE POR	METERS	2

- R FIELD CONTROL 3
 - 99)FIELD ENABLE

11.13.2 100)FIELD VOLTS OP %

Set the DC field voltage clamp as a % of the AC supply volts.

PIN	Parameter description	Range	Default
100	FIELD VOLTS OUTPUT %	0.00 to 100.00%	90.00%

NOTE: The value of this parameter is not restored to default by a 4-KEY RESET (factory default reset). It remains as calibrated.

It may be necessary to set the field voltage instead of the field current. For example, there may only be a volts rating on the rating plate. Refer to "12.4.4 146)ANGLE OF ADVANCE" on page 214.

This parameter sets an upper clamp level for the field current loop, allowing you to achieve voltage mode. **NOTE:** The rated field amps current setting in the calibration menu is the limiting value irrespective of this clamp voltage setting. This protects the PL/X and the motor.

Conversely, this voltage clamp setting will be a limiting value irrespective of the rated field amps setting. Set the rated field amps to a level that is slightly in excess of the cold field current to ensure the field output voltage always remains at the clamp voltage. Then as the field warms up, any voltage rise needed by the field current loop will be clamped to the level set.

The clamp will work with the rated field amps set to maximum. However, this might not provide enough protection for the motor if there is a problem in the field winding resulting in overcurrent.

R	ENTRY	MENU	LEVEL	1
---	-------	------	-------	---

R CHANGE PARAMETERS 2

R FIELD CONTROL 3

100)FIELD VOLTS OP % R

Refer to "Figure 34 Wiring diagram for AC supply level to L1/2/3 different to EL1/2/3 (e.g. low voltage field)" on page 107.

11.13.3 101)FIELD PROP GAIN

Set the proportional gain of the field current control loop.

PIN	Parameter description	Range		Default	
101	FIELD PROPORTIONAL GAIN	0 to 1000		10	
Increas	Increase the parameter value to improve response.			1ENU LEVEL	1
curren	t.	i lielu I	CHANGE	PARAMETERS	2

R FIELD CONTROL 3

101)FIELD PROP GAIN

11.13.4 102)FIELD INT GAIN

Set the integral gain of the field current control loop.

PIN	Parameter description	Range			Defaul	t	
102	FIELD INTEGRAL GAIN	0 to 1000			100		
Increa Howev curren	se the parameter value to improve respo rer, too much may cause instability in the t.	onse. e field	R R R	ENTRY CHANGE FIELD	MENU PARAME CONTROL FIELD 1	LEVEL TERS	1 2 3

11.13.5 111)STANDBY FLD ENBL

Enable/disable the standby field quench mode.

PIN	Parameter description	Range			Default	t	
111	STANDBY FIELD ENABLE	DISABLED ENABLED		DISABLED		ED	
Use this to keep the motor warm during off periods to prevent condensation in cold climates. When DISABLE the field quenches to zero. Refer to "11.13.6 112)			R R	ENTRY N Change	1enu Paramet	LEVEL	1 2
STAND	BY FLD CUR" on page 187.		R	FIELD C	ONTROL		3
A run condition is enabled by (START or JOG) and RUN. This parameter prevails for non-running conditions.		nd RUN. ions.		_111>	STANDBY	' FLD ENE	ЗL

11.13.6 112)STANDBY FLD CUR

Set the standby value of the field current.

PIN	Parameter description	Range	Default	
112	STANDBY FIELD CURRENT	0.00 to 100.00%	25.00%	

Use this to keep the motor warm during off periods to help prevent condensation in cold climates.

100.00% represents 4)RATED FIELD AMPS, as set in the CALIBRATION menu.

R	ENTRY	MENU	LEVEL	1
---	-------	------	-------	---

- **R** CHANGE PARAMETERS 2
- R FIELD CONTROL 3

112>STANDBY FLD CUR

11.13.7 113)FLD QUENCH DELAY

Set the field quench delay time after main contactor drop-out.

PIN	Parameter description	Range			Defaul	t	
113	FIELD QUENCH DELAY	0.0 to 600.0	se	conds	10.0 seconds		
Use this to ensure the motor can generate into a dynamic braking resistor after the main contactor drops out.		R R	ENTRY I	1enu Parame:	LEVEL	1	
A run condition is enabled by (START or JOG) and RUN. This delay activates when a non-running condition begins.		nd RUN. tion	R	FIELD (ontrol	NCH DEL	3 AY.

11.13.8 114)FIELD REFERENCE

Set the value of an external field reference input.

PIN	Parameter description	Range			Default	t	
114	FIELD REFERENCE	0.00 to 100.	00%	6	100.00%		
This pa AMPS' Use th refere if the r	arameter is a scaler of "11.1.3 4)RATED F ' on page 117. is with systems requiring an external fiel nce input. The minimum field clamp will reference goes below the minimum field.	IELD d operate	R R R	ENTRY CHANGE FIELD	MENU PARAME [*] CONTROL >FIELD R	LEVEL FERS REFERENCE	1 2 3

11.14 CHANGE PARAMETERS / FIELD CONTROL/FLD WEAKENING MENU

Enable this function to control field weakening.

There are five adjustable control terms:

- error terms:
 - 1. proportional (P)
 - 2. integral (I)
 - 3. derivative (D)
- feedback terms:
 - 4. derivative
 - 5. integral.

All control terms are associated with the armature voltage spillover loop, and the values chosen give the best response without excessive overshoots or instability of the armature voltage.

The control loop monitors the armature voltage and compares it to the desired spillover voltage. It then controls the field current to optimise the speed control of the PL/X in the field weakening region.

When the armature voltage reaches the spillover voltage, field weakening achieves further speed increases and effectively clamps the armature voltage at the spillover voltage. In this region, the output power is constant for a given armature current.

Refer to "11.1.9 14)IR COMPENSATION" on page 123. Further accuracy can be achieved with IR COMP.

- R CHANGE PARAMETERS 2
- R FIELD CONTROL
- FIELD WEAKENING MENU 4

3

103>FLD WEAK ENABLE 104>FLD WK PROP GAIN 105>FLD WK IN TC ms 106>FLD WK DRV TC ms 107>FLD WK FBK DRV ms 108>FLD WK FBK INT ms 109>SPILLOVER AVF % 110>MIN FLD CURRENT

NOTE: The limit of field weakening range is 10 : 1.

Refer to "13.1.1 171)SPD TRIP ENABLE" on page 225.

WARNING! EQUIPMENT DAMAGE HAZARD

When using field weakening and a dc side contactor, the armature **MUST** be connected to remote sense terminals T41 and T43, as shown on Page 54. It ensure that the PL/X can measure armature voltage with the dc side contactor deenesrgised. Failure to do this will cause a flashover of the commutator because the AVF feedback is lost when the contactor opens.

CAUTION!

Do not use field weakening when using Armature Voltage Feedback, selected in the CALIBRATION menu.

If AVF is selected and field weakening is enabled, the PL/X will trip when entering the field weakening region. **NOTE:** The action of changing feedback mode to AVF will automatically rescale the 100% speed feedback referring to **18)RATED ARM VOLTS.** To continue running in this mode (e.g. if tacho has failed) and prevent tripping, avoid the field weakening region remaining at a speed that produces an armature voltage below **109)SPILLOVER AVF** %. **130)MOTOR RPM** monitor will show an incorrect value unless you re-adjust

6 DESIRED MAX RPM to the base RPM. If this trip occurs, the DRIVE TRIP MESSAGE will be SPEED FBK MISMATCH.

11.14.1 103)FLD WEAK ENABLE

Enable/disable the field weakening.

PIN	Parameter description	Range	Default
103	FIELD WEAKENING ENABLE	DISABLED ENABLED	DISABLED

- R ENTRY MENU LEVEL 1
- **R** CHANGE PARAMETERS 2
- R FIELD CONTROL 3
 - FIELD WEAKENING MENU 4

103)FLD WEAK ENABLE

11.14.2 104)FLD WK PROP GAIN

Set the proportional gain of the field weakening loop.

PIN	Parameter description	Range			Default	t	
104	FIELD WEAKENING PROPORTIONAL GAIN	0 to 1000		50			
Generally, an increased proportional value will			R	ENTRY I	MENU	LEVEL	1
operat	ting around the spillover voltage point, a	nd a	R	CHANGE	PARAMET	TERS	2
decrea	ase will slow it.		R	FIELD (CONTROL		3
Increasing the value too far may cause instability of the armature voltage and possible overvolting of the commutator		ity of		FIELD	JEAKENII	NG MENU	4
		of the		104>	FLD WK	PROP GAI	(N

11.14.3 105)FLD WK INT TC ms

Set the integral time constant of the weakening loop.

PIN	Parameter description	Range			Default		
105	FIELD WEAKENING INTEGRAL TIME CONSTANT in milliseconds	0 to 20000			4000		
Generally, an increased integral time constant will slow the response to the armature voltage when operating around the spillover voltage point, and a decrease will improve the response.			R R R	ENTRY I CHANGE FIELD (1ENU PARAMET CONTROL	LEVEL	1 2 3
Decreasing the value too far may cause instability of the armature voltage and possible overvolting of the commutator.				FIELD (105)	JEAKENIN FLD WK	IG MENU	4 15

11.14.4 106)FLD WK DRV TC ms

Set the derivative time constant of the weakening loop.

PIN	Parameter description	Range	Default
106	FIELD WEAKENING DERIVATIVE TIME CONSTANT in milliseconds	10 to 5000	200

R ENTRY MENU

R FIELD CONTROL

R CHANGE PARAMETERS

FIELD WEAKENING MENU 4

106)FLD WK DRV TC ms

LEVEL

1

2

3

Generally, keep this parameter between 5 and 10% of the 105)FLD WK INT TC ms setting to provide correct attenuation to the response of the weakening loop at high frequencies.

A higher setting may cause instability of the armature voltage and possible overvolting of the commutator.

11.14.5 107)FLD WK FB DRV ms

Set the feedback derivative time constant in milliseconds.

PIN	Parameter description	Range	ge			Default		
107	FIELD WEAKENING FEEDBACK DERIVATIVE in milliseconds	10 to 5000			100			
This parameter affects the armature voltage overshoot when accelerating rapidly through the base speed. An increasing ratio (of the 107 >FLD WK FB DRV ms parameter to the 108 >FLD WK FB INT ms parameter (D/I)) tends to reduce overshoots, a ratio of unity has no effect, and a ratio of three or more tends to instability. The absolute values of the two parameters have only a 2nd order effect on the response.			R R	ENTRY	MENU		1	
			R	FIELD			3	
				107	FLD WK	FB DRV r	+ ns	

11.14.6 108)FLD WK FBK INT ms

Set the feedback integral time constant in milliseconds.

PIN	Parameter description	Range			Default		
108	FIELD WEAKENING FEEDBACK INTEGRAL in milliseconds	10 to 5000			100		
This parameter affects the armature voltage overshoot when accelerating rapidly through the base speed. An increasing ratio (of the 107 >FLD WK FB DRV ms parameter to the 108 >FLD WK FB INT ms parameter (D/I)) tends to reduce overshoots, a ratio of unity has no effect, and a ratio of three or more tends to instability. The absolute values of the two parameters have only a 2nd order effect on the response.			R	ENTRY I	MENU	LEVEL	1
			R	FIELD (G MENIL	3
				108>	FLD WK F	FB DRV r	ns
11.14.7 109)SPILLOVER AVF %

Set the armature voltage % at which field weakening begins.

PIN F	Parameter description	Range	Default
109 S	SPILLOVER ARMATURE VOLTAGE FEEDBACK %	0.00 to 100.00% of rated AVF	100.00%

NOTE: The rated armature voltage is settable in the CALIBRATION menu.

- R ENTRY MENU LEVEL 1
- **R CHANGE PARAMETERS** 2
- R FIELD CONTROL 3
 - FIELD WEAKENING MENU 4

109)SPILLOVER AVF %

11.14.8 110)MIN FIELD CURRENT

Set the minimum field current as a % of the rated amps.

PIN	Parameter description	Range	Default
110	MINIMUM FIELD CURRENT	0.00 to 100.00% of rated IF	10.00%

NOTE: When setting the minimum percentage, allow an extra 5% margin below the desired minimum to accommodate a response transient. If the minimum is below 10%, there may be a field failure alarm caused by an undershoot.

WARNING! **PERSONAL INJURY AND/OR** EOUIPMENT DÁMAGE HAZARD

The protection provided in field weakening mode is limited to total feedback loss only because the speed/AVF relationship is not maintainable in the field weakening mode. If a partial loss of feedback occurs, the motor may run to excessive speed. When the field is entirely weakened and is at its minimum level, the armature overvoltage trip will operate. It may only occur at dangerous speeds. Therefore, we recommend using a mechanical device, a backup system, or both to protect against this possibility.

Correct setting of 110>MIN FIELD CURRENT will ensure that the overvolts TRIP occurs just above the maximum operating speed.

R ENTRY MENU LEVEL 1

R CHANGE PARAMETERS 2

R FIELD CONTROL

FIELD WEAKENING MENU 4

110>MIN FIELD CURRENT

3

11.15 CHANGE PARAMETERS / ZERO INTERLOCKS

Use this menu to enable two interlocking functions that are associated with zero speed. Their normal standstill behaviour is as follows.

The condition of 'zero speed and current demand' AND 'zero speed feedback' being satisfied removes the firing pulses. All other loops remain active to enable a rapid response for a new request for speed.

- 117) ZERO INTLK SPD % sets the threshold for both • the zero speed reference and feedback decisions.
- 118)ZERO INTLK CUR % sets the threshold for the . zero current demand decision. A setting of 0.00% for this parameter does NOT remove the firing pulses.

Due to the rapid response of the above condition, it may be necessary to implement 115)STANDSTILL ENBL. Without this guench function enabled, the motor may continuously move as the system responds to slight variations, which may be undesirable.

- 115)STANDSTILL ENBL provides an extra level of 1. inhibiting as it not only removes firing pulses but also guenches the loops. It operates after meeting the requirements of zero speed reference and zero speed feedback. 117) ZERO INTLK SPD % sets the threshold for both the zero speed ref and feedback decisions.
- 2. 116) ZERO REF START. This parameter prevents the current control from enabling after a start command if the total speed reference to the PL/X or the input to the RUN MODE RAMPS is not at zero. Use this if inadvertently starting the motor is undesirable. The message CONTACTOR LOCK **OUT** will appear after approximately 2 seconds if this function is not satisfied. The contactor is de-energised. For example, if an extruder is full of cold plastic, starting it may damage the screw. By implementing this function, the operator must deliberately set the references to zero to commence running.

For these functions to work, the zero threshold levels 117) ZERO INTLK SPD % and 118) ZERO INTLK CUR × must be defined. All the threshold levels are symmetrical for reverse rotation and have a hysteresis of ±0.5% around the chosen value.

For systems using a shaft encoder, there is a submenu for implementing spindle orientation and zero speed shaft position lock or both.

In addition to the adjustable parameters, there are four diagnostic monitoring flags.

The CHANGE PARAMETERS menu

11.15.1 115)STANDSTILL ENBL

Enable/disable the standstill function.

PIN Pa	arameter description	Range	Default
115 ST.	ANDSTILL ENABLE	DISABLED ENABLED	DISABLED

If enabled, the standstill function will inhibit the stack firing when there is a zero reference AND zero speed.

This parameter must be DISABLED for the operation of "11.16 CHANGE PARAMETERS / ZERO INTERLOCKS / SPINDLE ORIENTATE" on page 197.

R	ENTRY	MENU	LEVEL	1
---	-------	------	-------	---

- R CHANGE PARAMETERS 2
- **R ZERO INTERLOCKS** 3
 - 115)STANDSTILL ENBL R

11.15.2 116)ZERO REF START

Enable/disable the zero reference start function.

PIN	Parameter description	Range			Defaul	t	
116	ZERO REFERENCE START	DISABLED ENABLED			DISABL	.ED	
			R	ENTRY 1	1ENU	LEVEL	1
			R	CHANGE	PARAME	TERS	2
			R	ZERO IN	TERLOC	KS	3
				116>	ZERO RE	F START	

11.15.3 117)ZERO INTLK SPD %

Set the speed level for the zero reference start and standstill blocks.

PIN	Parameter description	Range	Default
117	ZERO INTERLOCK SPEED %	0.00 to 100.00%	1.00%

The signals detected are total speed reference and speed feedback. The input depends on the function ("total speed reference" for standstill, and the total speed inputs prior to the normal ramp for zero reference start).

This speed level also sets the threshold for 120)AT ZERO SPD FLAG.

R	ENTRY MENU LEVEL	1
R	CHANGE PARAMETERS	2
R	ZERO INTERLOCKS	3
	R 117)ZERO INTLK SPD	z

11.15.4 118)ZERO INTLK CUR %

Set the current % for the start and standstill blocks.

PIN	Parameter description	Range	Default
118	ZERO INTERLOCK CURRENT %	0.00 to 100.00%	1.50%

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R ZERO INTERLOCKS 3
 - R 118)ZERO INTLK CUR %

11.15.5 119)AT ZERO REF FLAG

Monitor the total speed reference zero status.

PIN	Parameter description	Range			
119	AT ZERO REFERENCE FLAG	LOW HIGH (at zero)			
			CUTOU	MELUI	

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R ZERO INTERLOCKS 3

119)AT ZERO REF FLAG

11.15.6 120)AT ZERO SPD FLAG

Monitor the zero speed reference.

PIN	Parameter description	Range			
120	AT ZERO SPEED FLAG	LOW HIGH (at zero)			
		R	ENTRY MENU	LEVEL	1
		R	CHANGE PARAME	TERS	2
		R	ZERO INTERLOC	KS	3
			120)AT ZERO) SPD FLA	G

11.15.7 121)AT STANDSTILL

Monitor the standstill status.

PIN	Parameter description	Range
121	AT STANDSTILL	LOW HIGH (at standstill)

This flag operates irrespective of the state of **115**) **STANDSTILL ENBL**.

11.15.7.1 Low speed performance

When running at very low speeds, the SPEED PI ADAPTION may need adjustment for optimum performance.

The default settings for SPEED PI ADAPTION give lower gain with low error to provide smooth steady-state performance. However, applications that require precise control at very low speeds may function better with the adaption disabled.

If you require the adaption to be on during normal running and off at low speeds, use a MULTI-FUNCTION block to connect an inversion of **120**>**AT ZERO SPD FLAG** to **79**>**SPD ADAPT ENABLE**.

- R ENTRY MENU LEVEL 1
- R CHANGE PARAMETERS 2
- R ZERO INTERLOCKS 3

121)AT STANDSTILL

Refer to "11.9.7 79)SPD ADAPT ENABLE" on page 166.

Refer to "11.9.1 Using small speed inputs" on page 164 and "11.6.1 Precise stopping" on page 152.

11.16 CHANGE PARAMETERS / ZERO INTERLOCKS / SPINDLE ORIENTATE

This sub-menu provides spindle orientation when the mechanical system is fitted with an incremental encoder (a bi-directional incremental encoder, with A and B channels plus marker output) to provide position feedback. If not using the SPINDLE ORIENTATE function, terminal T16 becomes available for other use.

NOTE: Only use this function with PLX models that have the regenerative stopping facility. Refer to "10.3 Electrical ratings" on page 93.

Operating the SPINDLE ORIENTATE block does not disturb the function of an encoder selected as a speed feedback option in the CALIBRATION menu.

The spindle orientation will function irrespective of the speed feedback type.

The block uses the encoder marker to provide the PL/X with the absolute position angle of the encoder. The encoder marker is input via terminal T15.

PL models with the regenerative stopping facility can only orientate during the contactor drop-out delay.

To maintain position lock during a contactor drop-out delay, ensure "11.6.4 58)LIVE DELAY MODE" on page 154 is set to ENABLED. Refer also to "11.6.6 60)DROP-OUT DELAY" on page 155.

The encoder pulses are input on terminals T16 and T17. (NOTE: We recommend Quadrature type encoders because they usually provide more accurate counting during reversals than pulse and direction types).

Use the CALIBRATION / ENCODER SCALING menu to program the encoder input type and scale by selecting the encoder type, sign, encoder lines and rpm.

The SPINDLE ORIENTATE block counts the pulses from the encoder using a bi-directional counter, counting forwards or backwards, depending on the direction of rotation. This counter represents the amount of angular rotation of the encoder and hence the motor shaft. The PL/X compares the position count and the spindle orientation reference to produce an error signal for use in the PL/X's negative feedback loop. The motor then rotates in a direction that reduces this error to zero, and hence brings the encoder marker to the spindle position reference.

The marker uniquely defines the absolute position of the rotating encoder to the machine. If 241) MARKER OFFSET and 242)POSITION REF are both zero, then the encoder shaft will be positioned at the marker. However, the marker will likely be in an arbitrary

- R ENTRY MENU LEVEL 1
- **R CHANGE PARAMETERS** 2
- R ZERO INTERLOCKS 3

4 SPINDLE ORIENTATE

122)ZERO SPEED LOCK 240) MARKER ENABLE 241)MARKER OFFSET

- 242)POSITION REF
- 243) MARKER FREQ MON
- 244) IN POSITION FLAG

position. The PL/X uses **241>MARKER OFFSET** to defeat this problem, performing a one-off positioning of the shaft to a known position each time the spindle orientate block actions, e.g. to top dead centre. **242> POSITION REF** is then always referred to this known position.

To summarise:

Dropping below the zero speed threshold activates the orientation function, and by commencing orientation, actions the 241)MARKER OFFSET just once. 242> POSITION REF is then followed with respect to the 241>MARKER OFFSET position.

The orientation function is de-activated by increasing the speed demand above the zero speed threshold.

242>POSITION REF may be changed as many times as required, and the shaft position will track it relative to the 241>MARKER OFFSET position. Each time 242> POSITION REF changes to a new value, 244>IN POSITION FLAG reports on the new position.

The gain and hence response of the position control loop is set by **122>ZERO SPEED LOCK**. A value of zero will turn off the position loop.

The block also provides **243**)**MARKER FREQ MON**, indicating marker frequency.

For systems that require position locking at zero speed but where the absolute position is unimportant, use 122>ZERO SPEED LOCK only. In this case, set 240> MARKER ENABLE to DISABLED.

11.16.1 Spindle orientate operation

For all speeds above **117>ZERO INTLK SPD** ², the spindle orientate control action is disabled. However, the marker frequency monitor will function within its defined limits providing **240>MARKER ENABLE** is enabled.

NOTE: The marker used for orientation is the last input before the speed falls below the 117>ZERO INTLK SPD % threshold. (This is normally within 1 revolution of the shaft prior to the threshold).

The spindle orientate function operates when the speed falls below 117>ZERO INTLK SPD % providing that the 122>ZERO SPEED LOCK setting is a nonzero value and 240>MARKER ENABLE is set to ENABLED. It continues to function while the speed demand is below 117>ZERO INTLK SPD %. Actual speed is allowed to exceed 117> ZERO INTLK SPD % without turning the block off.

The sequence of operation is as follows.

- 1. The speed demand and feedback fall and remain below 117) ZERO INTLK SPD % for 400 ms. It includes stopping sequences using terminals T33 or T32.
- 2. The spindle orientation block is activated.
- 3. The PL/X calculates the shaft position at the last marker to be input before the speed falls below 117)ZERO INTLK SPD %.
- The shaft seeks the 241) MARKER OFFSET position. 4.
- 5. As the shaft approaches the marker offset position, the block checks for the 242) POSITION REF target.
- 6. If the position reference is nonzero, the shaft immediately seeks the position reference with respect to the marker offset without waiting to stop at the marker offset position.
- 7. When the shaft reaches 242)POSITION REF target, the 244) IN POSITION FLAG goes high.
- 8. If a new 242) POSITION REF is entered, the shaft immediately seeks the new 242)POSITION REF target.
- 9. When the shaft reaches the new 242)POSITION REF target, the 244) IN POSITION FLAG goes high again.
- 10. The sequence of 8 and 9 may repeat as many times as desired as long as the speed demand remains below 117) ZERO INTLK SPD %.

NOTE: 241) MARKER OFFSET and 242) POSITION REF. or both, may be positive or negative, giving a choice of

clockwise/anti-clockwise search. This ability becomes usable if the speed direction changes and shaft reversal is undesirable. It may be helpful to use position references that include extra complete turns to provide smoother stopping. The block waits for approximately 400 ms before activating to allow undisturbed speed traverse through zero.

Two hidden PINs allow access to the position counter (e.g. with serial link):

- 710) POSITION COUNT gives a running total (four counts per line in guadrature mode or two counts per line in single-pulse train mode).
- 711) POS CNT DIVIDER is a decimal number input in the range 1 to 30,000, usually sent by a host computer, and is used to divide the total position count so that the receiving host does not have to poll at a high rate.

11.16.2 122)ZERO SPEED LOCK

Set the position control gain for zero speed shaft lock.

PIN	Parameter description	Range	Default
122	ZERO SPEED LOCK	0.00 to 100.00	0.00

NOTE: If this value is nonzero, AND both speed demand and feedback are less than 117) ZERO INTLK SPD%, an encoder position control loop activates.

The motor must have a bi-directional output shaft encoder (quadrature, OR pulse and direction). When locked, the speed may exceed 117)ZERO INTLK SPD% without losing the lock. Zero speed shaft lock is only released when speed demand > 117>ZERO INTLK SPD%.

The suggested value for 122) ZERO SPEED LOCK is 10.00. Increasing it improves the position response. Excessive gain may cause position instability.

Refer to "11.1.8 9)SPEED FBK TYPE" on page 120.

R ENTRY MENU LEVEL	1
--------------------	---

R CHANGE PARAMETERS 2

R ZERO INTERLOCKS 3

SPINDLE ORIENTATE 4

122)ZERO SPEED LOCK

11.16.3 240)MARKER ENABLE

Enable the marker to determine the spindle orientation.

		-						
	PIN	Parameter description	Range			Default	:	
	240	MARKER ENABLE	ENABLED DISABLED			DISABL	ED	
DISABLED turns off the spindle orientate function and				R	ENTRY 1	1ENU	LEVEL	1
the marker frequency monitor function.				R	CHANGE	PARAMET	TERS	2
NOTE: 122>ZERO SPEED LOCK function will continue to work; however, the stopping position is arbitrary.		ntinue to ry.	R	ZERO IN	ITERLOCK	(S	3	
							TOTE	4

11.16.3.1 Marker specification

The logic threshold levels for T15 are:

- 0 < 2 V
- 1 > 4 V

The maximum input voltage is 50 V. The minimum width specification for the marker is 10 µs.

The precise point of reference is the rising edge of the marker. The system can use various marker signal types, although some are less prone to noise than others.

240) MARKER ENABLE

Figure 55 MARKER ENABLE

Type 1 is the preferred marker signal because it is well away from the logic threshold for most of the time, and so noise is very unlikely to cause a false marker reading.

However, Types 2 and 3 spend significant time near the logic threshold level, and therefore noise is more likely to produce a false marker reading.

11.16.4 241) MARKER OFFSET

Offset an arbitrary marker to a defined position.

PIN	Parameter description	Range		Default	t	
241	MARKER OFFSET	±15000 counts	5	0		
NOTE: of orie OFFSE	This offset is added just once at the beg ntation. Changing the value of 241>MAR T before the subsequent orientation sec	inning _R K ER Juence ^R	Entry i Change	1enu Paramet	LEVEL	1
does not affect the existing position. When seeking the offset, its sign determines the rotation direction.			ZERO I	ITERLOCK	KS	3
			SPINDLE		TOTE	4

The count value needed for any offset angle depends on the resolution of the feedback encoder and the type of encoder output. Quadrature encoders provide four counts per line. Single-pulse and direction encoders provide two counts per line:

Example:

Encoder has 3600 lines Encoder type is QUADRATURE.

This gives 3600 X 4 counts per rev = 14400. That is 14400/360 = 40 counts per degree of displacement. Hence, if an offset 56.8 degrees is required, enter counts of 56.8 X 40 = 2272.

241) MARKER OFFSET

Example:

If the encoder mounts on the motor shaft, but the spindle requiring orientation connects to the motor via a gearbox (meaning the motor shaft and therefore encoder rotate faster than the spindle), then the number of counts per revolution of the spindle increases by a factor equal to the gearbox ratio.

Counts per degree at the motor shaft = 40.

Reduction gearbox ratio = 3 : 1.

Therefore, counts per degree at the spindle = 120.

NOTE: In systems with reduction gearboxes, the motor encoder will provide more than one marker per revolution of the spindle. There are two ways to overcome this problem:

For non-integer ratio and integer ratio gearing:

 Provide another marker that occurs only once for each spindle revolution, e.g. a magnetic pick-up sensing a tab on the spindle.

OR, for integer ratio gearing only:

 Use the 240>MARKER ENABLE parameter to select the required marker at the appropriate position. To do this, use a microswitch that operates while the required marker is present, but does not operate with other markers.

11.16.5 242) POSITION REF

Enter a position reference referred to 241)MARKER OFFSET.

PIN	Parameter description	Range			Default	t	
242	POSITION REFERENCE	±30000 coun	ts		0 count	S	
NOTE:	NOTE: 242)POSITION REF may be adjusted at any R ENTRY MENU LEVEL 1						
time. If the system is above the zero lock threshold, then changing this value will have no effect. It can be changed as many times as required while operating in				CHANGE	PARAMET	TERS	2
				ZERO I	TERLOCK	<s< th=""><td>3</td></s<>	3
the zero speed lock region.				SPINDLE	E ORIENT	TATE	4
				242>	POSITIO	N REF	

11.16.6 243) MARKER FREQ MON

Monitor the frequency of the marker pulse on T15.

PIN	Parameter description	Range			Default	t	
243	MARKER FREQUENCY MONITOR	20.00 to 655	Hz	0.0 Hz			
PIN Parameter description R 243 MARKER FREQUENCY MONITOR 2 This output function measures the period betwee successive marker pulses to calculate the output frequency accurately. 2 NOTE: For frequencies below 20 Hz, the monitor display a random reading. 2		veen ut or will	R R R	ENTRY I CHANGE ZERO II SPINDLE 243)	1ENU PARAMET NTERLOCK ORIENT MARKER	LEVEL TERS (S TATE FREQ MON	1 2 3 4

11.16.7 244)IN POSITION FLAG

Monitor the position error.

PIN	Parameter description	Range	Default
244	IN POSITION FLAG	LOW HIGH	LOW

This flag goes HIGH if the position error is approximately <20 counts.

NOTE: The flag may oscillate whilst the loop is settling if 122>ZERO SPEED LOCK (gain) is high enough to cause overshoot.

- R ENTRY MENU LEVEL 1
- 2 **R** CHANGE PARAMETERS
- **R ZERO INTERLOCKS** 3
 - SPINDLE ORIENTATE 4
 - 244>IN POSITION FLAG

12 The DIAGNOSTICS menu

The diagnostics menu provides a monitoring facility for all the main drive parameters.

12.1 DIAGNOSTICS

The Diagnostics menu monitors important parameters within permanently functioning blocks (less important parameters can be found in their block menus).

The Application and some other block outputs are all made available in the BLOCK OP MONITOR menu. Also. for most blocks, the monitoring points are found within the block menus themselves.

n.	-		*
R	D	IAGNOSTICS	2
	R	SPEED LOOP MONITOR	3
	R	ARM I LOOP MONITOR	3
	R	FLD I LOOP MONITOR	3
	R	ANALOG IO MONITOR	3
	R	DIGITAL IO MONITOR	3
	R	BLOCK OP MONITOR	3
	R	169)EL1/2 RMS MON	
	R	170>DC KILOWATTS MC	DN

12.1.1 169)EL1/2 RMS MON

Monitor the rms AC supply voltage applied to the EL1, EL2 terminals (±5%).

PIN	Parameter description	Range
169	EL1/2 RMS MONITOR	0.0 to 1000.0 V

NOTE: There may be a slight offset affecting the displayed value when no voltage is applied. It depends upon the drive frame size due to differing power board designs.

R ENTRY MENU LEUFL 1 2

R DIAGNOSTICS

R 169)EL1/2 RMS MON

12.1.2 170)DC KILOWATTS MON

Monitor the output power in kilowatts at the drive A+/A- terminals.

PIN	Parameter description	Range					
170	DC KILOWATTS MONITOR	±3000.0 kW					
NOTE: A negative output power shows that the PL/X is regenerating into the AC supply. The power available at the motor shaft will depend on the motor efficiency (typically 90 to 95%).		R	ENTRY	MENU	LEVEL	1	
		ĸ	R 170	>DC КІLС	OWATTS M	ON	
To convert Kilowatts to Horsepower, multiply by a scaling factor of 1.34. The limits for this parameter (±3000.0 kW) equate to approximately 7500 A at 400 V or 4000 A at 750 V armature.							
NOTE: For the PL/XD stack driver usable in applications over 3000 kW, refer to the separate PL/XD Stack Driver manual.							
			///			///////////////////////////////////////	////

12.2 DIAGNOSTICS / SPEED LOOP MONITOR

This menu allows monitoring of the parameters associated with the speed loop.

Feedback sources can also be read in engineering units, eliminating difficult-to-interpret voltmeter readings during commissioning.

For convenience, 127) ARM VOLTS % MON shows armature voltage as a % of maximum rated value.

The monitors for armature volts, tacho volts, and encoder rpm all function continuously regardless of which is the source of feedback. These signal channels are also useful for tasks other than speed feedback.

R ENTRY MENU LEVEL 1

- R DIAGNOSTICS 2
- R SPEED LOOP MONITOR 3
 - 123) TOTAL SPD REF MN R 124) SPEED DEMAND MON 125)SPEED ERROR MON 126) ARM VOLTS MON R
- 127) ARM VOLTS % MON 128) BACK EMF % MON
- 129) TACHO VOLTS MON R
- 130>MOTOR RPM MON R
- 132)ENCODER RPM MON R
- 131) SPEED FBK MON R

12.2.1 123)TOTAL SPD REF MN

Monitor the % value of the total speed reference before the STOP RAMP BLOCK.

PIN	Parameter description	Range
123	TOTAL SPEED REFERENCE MONITOR	±300.00%

This parameter is a summation of all possible speed references, including the RUN MODE RAMP.

Note that the RUN MODE RAMP may be active when the PL/X is in Stop mode. If a member of a cascaded system stops, this feature continues to allow the system to function. Refer to "11.3 CHANGE PARAMETERS / RUN MODE RAMPS" on page 131.

	R 123)TOTAL SPD REF	MN
R	SPEED LOOP MONITOR	3
R	DIAGNOSTICS	2
R	ENTRY MENU LEVEL	1

12.2.2 124)SPEED DEMAND MON

Monitor the % value of the total speed demand after the STOP RAMP BLOCK.

PIN	Parameter description	Range			
124	SPEED DEMAND MONITOR	±300.00%			
			R	ENTRY MENU	L 1
	R		R	DIAGNOSTICS	2
		R		SPEED LOOP MONITOR	3
				124)SPD DEMOND M	ION

12.2.3 125)SPEED ERROR MON

Monitor the value of the speed error as a % of full scale.

PIN	Parameter description	Range				
125	SPEED ERROR MONITOR	±300.00%				
			R R R	ENTRY MENU DIAGNOSTICS SPEED LOOP MOI 125)SPD ERR	LEVEL NITOR	1 2 3

12.2.4 126)ARM VOLTS MON

Monitor the average DC armature voltage independently of feedback type.

PIN	Parameter description	Range				
126	ARMATURE VOLTS MONITOR	±1250.0 V				
			R R R	ENTRY MENU DIAGNOSTICS SPEED LOOP MOI R 126)ARM VOL	LEVEL NITOR .TS MON	1 2 3

12.2.5 127)ARM VOLTS % MON

Monitor the value of the average DC armature voltage as a % of the desired maximum armature volts.

PIN	Parameter description	Range				
127	ARMATURE VOLTS % MONITOR	±300.00%				
NOTE: The 100% level is equivalent to 18>RATED ARM VOLTS.			R	ENTRY MENU	LEVEL	1
		к R	SPEED LOOP	MONITOR	- 2	
			127)ARM (JOLTS % MOI	4	

12.2.6 128)BACK EMF % MON

Monitor the value of the average DC back emf as a % of the desired maximum back emf.

PIN	Parameter description	Range			
128	BACK EMF % MONITOR	±300.00%			
NOTE:	Back EMF = AVF – IR drop.		R	ENTRY MENU LEVEL	1
			R	DIAGNOSTICS	2
			R	SPEED LOOP MONITOR	3
				128)BACK EMF % MO	4

12.2.7 129)TACHO VOLTS MON

Monitor the average DC tachogenerator voltage independently of feedback type.

PIN	Parameter description	Range				
129	TACHO VOLTS MONITOR	±220.00 V				
NOTE: unfilte	Hidden parameter 716>TACHO % UNF M red % version of this value.	DN is an	R R R	ENTRY MENU DIAGNOSTIC SPEED LOOP R 129)TACH	LEVEL S MONITOR 10 VOLTS MO	1 2 3

12.2.8 130)MOTOR RPM MON

Monitor the average DC tachogenerator voltage independently of feedback type.

PIN	Parameter description	Range				
130	MOTOR RPM MONITOR	±7500 rpm				
NOTE: 1. 2.	130>MOTOR RPM MON will only be accura In AVF feedback mode, 18>RATED ARI corresponds to 6>DESIRED MAX RPM speed. In ANALOG TACHO feedback mode, 8: TACHO VOLTS corresponds to 6>DESI RPM for 100% speed.	ate when: M VOLTS for 100% MAX RED MAX	R R R N(ENTRY MENU DIAGNOSTICS SPEED LOOP MON R 130>MOTOR R DTE: There is an un rsion of this value	LEVEL NITOR PM MON nfiltered	1 2 3
	RPM for 100% speed.		ve PII	rsion of this value N 717.	on hidde	n

12.2.9 132)ENCODER RPM MON

Monitor the value of the encoder revs per minute independently of feedback type.

PIN	Parameter description	Range					
132	ENCODER RPM MONITOR	±7500 rpm					
Refer to "11.2.3 12)MOT/ENC SPD RATIO" on page			R	ENTRY	MENU	LEVEL	1
129.		R	DIAGNO	OSTICS	6	2	
		R	SPEED	LOOP	MONITOR	3	
				R 132	ENCO	DER RPM N	ION

12.2.10 131)SPEED FBK MON

Monitor the value of the speed feedback as a % of full scale.

PIN	Parameter description	Range				
131	SPEED FEEDBACK MONITOR	±300.00%				
NOTE: an unfi	Hidden parameter 715>SPD FBK % UNF iltered % version of this value.	Mon is	R R R	ENTRY MENU DIAGNOSTIC SPEED LOOF R 131>SPE	J LEVEL 25 • MONITOR ED FBK MON	1 2 3

12.3 DIAGNOSTICS / ARM I LOOP MONITOR

This menu allows monitoring of the parameters associated with the current loop.

Feedback current can also be read in Amps, eliminating difficult-to-interpret ammeter readings during commissioning.

For convenience, 134) ARM CUR % MON shows armature current as a % of maximum rated value.

12.3.1 133)ARM CUR DEM MON

Monitor the value of the total armature current demand as a % of full scale.

PIN	Parameter description	Range			
133	ARMATURE CURRENT DEMAND MONITOR	±150.00%			
NOTE:	Hidden parameter 718) I DEMAND UNF I	MON is an	R	ENTRY MENU LEVE	L 1
unnite	unfiltered version of current demand			DIAGNOSTICS	2
			R	ARM I LOOP MONITOR	3
				R 133)ARM CUR DEM	MON

12.3.2 134)ARM CUR % MON

Monitor the value of the average DC armature current as a % of 2)RATED ARM AMPS.

PIN	Parameter description	Range				
133	ARMATURE CURRENT % MONITOR	±150.00%				
NOTE: Hidden parameter 719) CUR FBK % DEMANE MN is an unfiltered version of this value.		and UNF	R	ENTRY MENU	LEVEL	1
			R	ARM I LOOP MOI	NITOR	3
			R 134)ARM CUR	2 % MON		

12.3.3 135)ARM CUR AMPS MON

Monitor the value of the average DC armature current in Amps.

PIN	Parameter description	Range					
135	ARMATURE CURRENT AMPS MONITOR	±3000.0 A					
			R	ENTRY	MENU	LEVEL	. 1
			R	DIAGNO	STICS		2
			R	ARM I	LOOP	MONITOR	3
				r 135) ARM C	UR AMPS	MON

12.3.4 136)UPPER CUR LIM MN

Monitor the % value of the scaled upper current limit in the current clamp block.

PIN	Parameter description	Range				
136	UPPER CURRENT LIMIT MONITOR	±150.00%				
The sca in the l CONTR	aled upper current limit is the last stage block diagram. Refer to "Figure 48 CURR OL: block diagram" on page 168.	clamp ENT	R R R	ENTRY MENU DIAGNOSTICS ARM I LOOP MO 136)UPPER	LEVEL DNITOR CUR LIM	1 2 3 MN

12.3.5 137)LOWER CUR LIM MN

Monitor the % value of the scaled lower current limit in the current clamp block.

PIN	Parameter description	Range			
137	LOWER CURRENT LIMIT MONITOR	±150.00%			
The scaled lower current limit is the last stage clamp in the block diagram. Refer to "Figure 48 CURRENT CONTROL: block diagram" on page 168.		clamp RENT	R R	ENTRY MENU LEVEL DIAGNOSTICS	1
		R	ARM I LOOP MONITOR	3	
			137)LOWER CUR LIM	MN	

12.3.6 138)ACTUAL UPPER LIM

Monitor the % value of the prevailing upper limit in the current clamp block.

PIN	Parameter description	Range				
138	ACTUAL UPPER LIMIT	±150.00%				
			R	ENTRY MENU	LEVEL	1
			R	DIAGNOSTICS		2
			R	ARM I LOOP	MONITOR	3
					IL UPPER L	IM.

12.3.7 139)ACTUAL LOWER LIM

Monitor the % value of the prevailing lower limit in the current clamp block.

PIN	Parameter description	Range				
139	ACTUAL LOWER LIMIT	±150.00%				
The prevailing source is the clamp with the lowest setting. Refer to "Figure 48 CURRENT CONTROL: block diagram" on page 168.		est L: block	R R	ENTRY MENU	LEVEL	1
		R	ARM I LOOP MO	NITOR	3	
			R 139)ACTUAL	LOWER L	.IM	

12.3.8 **140)O/LOAD LIMIT MON**

Monitor the prevailing % value of the overload limit in the current clamp block.

PIN	Parameter description	Range				
140	OVERLOAD LIMIT MONITOR	0.00 to 150.00%				
		R	ENTRY MENU LEVEL 1			
		R	DIAGNOSTICS 2			
		R	ARM I LOOP MONITOR 3			
			140>0/LOAD LIMIT MON			

12.3.9 141)AT CURRENT LIMIT

Monitor if the armature current has reached the prevailing current limit clamp.

PIN	Parameter description	Range				
141	AT CURRENT LIMIT	LOW HIGH				
		я	ENTRY	MENU	LEVEL	1
		F	DIAGN	OSTICS		2
		F	ARM I	LOOP MO	NITOR	3
)AT CURR	RENT LIM	IT

12.4 DIAGNOSTICS / FIELD I LOOP MONITOR

This menu allows monitoring of the parameters associated with the field control loop.

The motor field current can also be read in Amps, eliminating difficult-to-interpret ammeter readings during commissioning.

For convenience, **144**>**FIELD CUR %** MON shows field current as a % of maximum rated value.

- R ENTRY MENU LEVEL 1
- R DIAGNOSTICS 2
- R FIELD I LOOP MONITOR 3
- R 143)FIELD DEMAND MON R 144)FIELD CUR % MON R 145)FLD CUR AMPS MON 146)ANGLE OF ADVANCE

147)FIELD ACTIVE MON

12.4.1 143)FIELD DEMAND MON

Monitor the value of the field current demand as a % of full scale.

PIN	Parameter description	Range				
143	FIELD DEMAND MONITOR	0.00 to 100.00%				
		R	ENTRY	MENU	LEVEL	1
		R	DIAGNO	STICS		2
		R	FIELD	I LOOP	MONITOR	3
			r 143	FIELD	DEMAND MC	DN

12.4.2 144)FIELD CUR % MON

Monitor the value of the average DC motor field current as a % of rated field Amps.

PIN	Parameter description	Range				
144	FIELD CURRENT % MONITOR	0.00 to 125.00%				
		R	ENTRY	MENU	LEVEL	1
		R	DIAGNO	STICS		2
		R	FIELD	I LOOP	MONITOR	3
			R 144	FIELD	CUR % MON	I

12.4.3 145)FIELD CUR AMPS MON

Monitor the value of the average DC motor field current in Amps.

PIN	Parameter description	Range					
145	FIELD CURRENT AMPS MONITOR	0.00 to 100.00) A			
This parameter is model dependent to 50 A, and is extended to 100 A with the special option field in frame 5 drives.		id is _R in frame _R	א ב א ב	ENTRY	MENU DSTICS	LEVEL	1
		R	R F	TELD	I LOOP FIELD C	MONITOR UR AMPS M	3 10N

12.4.4 146)ANGLE OF ADVANCE

Monitor the value of the field bridge firing angle of advance in degrees.

PIN	Parameter description	Range
146	ANGLE OF ADVANCE	0 to 180 DEG

NOTE: This parameter is only updated if the field is enabled. The convention used is 0 degrees = no firing, and 180 degrees = full firing. The formula for calculating the field volts is as follows:

Volts = $0.45 \times AC$ supply volts x (1-cos alpha)

where firing Angle of Advance (degrees) = alpha.

DIAGNOSTICS R

R ENTRY MENU

R FIELD I LOOP MONITOR 3 146) ANGLE OF ADVANCE

LEVEL

1

2

Firing angle (deg)	AC supply 200	AC supply 240	AC supply 380	AC supply 415	AC supply 480
25	Minimum field	Minimum field	Minimum field	Minimum field	Minimum field
30	12	14	22	24	28
40	20	24	39	42	49
50	31	37	60	65	76
60	44	53	84	92	107
70	58	70	111	121	141
80	73	88	140	154	177
90	89	107	170	185	215
100	104	125	199	218	252
110	119	143	228	249	288
120	134	161	255	279	324
130	146	176	279	305	353
140	157	189	300	328	380
150	166	200	318	347	402
160	173	208	330	361	416
170	177	213	338	369	427
177	179	215	341	372	430

When operating in current control mode, you should realise that, after about 150 degrees, there are only about 5% more volts available. The volts need to move higher to maintain the correct current as the field warms up and field winding resistance increases. It is also necessary to allow a margin for supply tolerance.

When the field is at its highest operating temperature, the firing angle should not usually exceed 150 degrees to prevent saturation of the control loop. A typical field winding resistance will change by about 20% between a cold and a running temperature. Hence the maximum cold firing angle will be at about 125 degrees. If the field loop does saturate, the speed loop will have to work harder to maintain control. In AVF (Armature voltage feedback) systems, the speed holding may be less accurate.

12.4.5 147)FIELD ACTIVE MON

Monitor the field output for being active (ENABLED) or inactive (DISABLED).

PIN	Parameter description	Range
147	FIELD ACTIVE MONITOR	DISABLED ENABLED

- R ENTRY MENU LEVEL 1
- R DIAGNOSTICS 2

R FIELD I LOOP MONITOR 3

147)FIELD ACTIVE MON

12.5 DIAGNOSTICS / ANALOG IO MONITOR

This menu allows monitoring of the analog input and output functions.

UIP2 to UIP9 are universal inputs and are usable as digital inputs, analog inputs, or both. The analog value appears in this menu, and simultaneously the digital logic level appears in the DIGITAL IO MONITOR menu. The UIP number corresponds to its terminal number.

Note that the analog output monitors for AOP1/2/3 show the value written to that output. If it is overloaded or shorted, the PL/X cannot display the correct value.

R	E	NTRY MENU LEVEL 1	
R	D	IAGNOSTICS 2	:
R	A	NALOG IO MONITOR 3	
	R	150)UIP2 (T2) MON	
	R	151)UIP3 (T3) MON	
	R	152)UIP4 (T4) MON	
		153)UIP5 (T5) MON	
		154)UIP6 (T6) MON	
		155)UIP7 (T7) MON	
		156)UIP8 (T8) MON	
		157)UIP9 (T9) MON	
		159)AOP1 (T10) MON	
		160)AOP2 (T11) MON	
		161)AOP3 (T12) MON	

12.5.1 150)UIP2 (T2) MON to 157)UIP9 (T9) MON

Monitor the analog voltage for the universal inputs 2 to 9.

PIN	Parameter description	Range				
150- 157	UNIVERSAL INPUT MONITOR	±30.730 V				
The mo selecte Ra Al Ra Al Ra Al Al	ponitoring range depends upon the UIP rated: ± 5 , ± 10 , ± 20 , or ± 30 V: ange for 5 V is ± 5.3 V. posolute accuracy worst case 0.4%, typical ange for 10 V is ± 10.4 V. posolute accuracy worst case 0.4%, typical ange for 20 V is ± 20.6 V. posolute accuracy worst case 4%, typically ange for 30 V is ± 30.8 V. posolute accuracy worst case 4%, typically	Inge Iy 0.1%. Ily 0.1%. 1%.	R D R A R R R	NTRY MENU IAGNOSTICS NALOG IO MO 150)UIP2 151)UIP3 152)UIP4 153)UIP5 154)UIP6 155)UIP7 156)UIP8 157)UIP9	LEVEL (T2) MON (T3) MON (T4) MON (T5) MON (T5) MON (T6) MON (T7) MON (T8) MON (T9) MON	1 2 3

12.5.2 159)AOP1 (T10) MON to 161)AOP3 (T12) MON

Monitor the analog output voltage for AOP1/2/3.

PIN	Parameter description	Range
159- 161	ANALOG OUTPUT MONITOR	±11.300 V

Note that the analog output monitors for AOP1/2/3 show the value written to that output. If it is overloaded or shorted, the PL/X cannot display the correct value.

- R ENTRY MENU LEVEL 1
 - R DIAGNOSTICS 2
 - R ANALOG IO MONITOR 3

159)AOP1 (T10) MON 160)AOP2 (T11) MON 161)AOP3 (T12) MON

12.6 DIAGNOSTICS / DIGITAL IO MONITOR

This menu allows monitoring of the digital input and output functions.

UIP2 to UIP9 are universal inputs and are usable as digital inputs, analog inputs, or both. The digital logic level appears in this menu, and simultaneously the analog value appears in the ANALOG IO MONITOR menu. The UIP number corresponds to its terminal number.

PINS 162 to 164 arrange the logic inputs into groups for ease of viewing.

R DIAGNOSTICS

2

- R DIGITAL IO MONITOR 3
 - R 162)UIP 23456789
 - 163)DIP 12341234 DIO R
 - R 164)DOP 123TRJSC CIP
 - 165)+ARM BRIDGE FLAG
 - 166) DRIVE START FLAG R
 - 167) DRIVE RUN FLAG R
 - R 168>RUNNING MODE MON

12.6.1 162)UIP 23456789

Monitor the digital logic level for UIP2 to 9.

PIN	Parameter description	Range			
162	UNIVERSAL INPUT MONITOR	0 / 1 for each UIP (0 = low)			
NOTE: menu.	Set the logic threshold in the Configurati	ion	R R	ENTRY MENU LEVEL DIAGNOSTICS	1
PL/X us most s the left	When this value connects to another PIN ses the pure binary to decimal equivalent ignificant bit on the right, the least signif t).	N, the t (the icant on	R	DIGITAL IO MONITOR	3

12.6.2 163)DIP 12341234 DIO

Monitor the digital logic level present at the DIP1-4 and DIO1-4 terminals.

PIN	Parameter des	cription	Range				
163	DIGITAL INPUT	DIGITAL OUTPUT	0 / 1 for eac	h D	DIP/DIO (0 = low))	
NOTE: PL/X us most si	When this value of the pure binaring the pure binaring the pure binaring the pure binaring the second secon	connects to another PIN ry to decimal equivalen ne right, the least signif	۹, the t (the icant on	R R	ENTRY MENU	LEVEL	1
the left	:).			R	DIGITAL IO M	ONITOR	3
					R 163)DIP 1	2341234	DIO

12.6.3 164)DOP 123TRJSC CIP

Monitor the digital logic level for DOP1 to 3 and Therm, Run, Jog, Start, Cstop

PIN	Parameter descri	ption	Range
164	DIGITAL OUTPUT	CONTROL INPUT	0 / 1 for 8 signals (0 = low)

The DOP value shown is the intended value. If the DOP is shorted, a 1 still shows as a 1.

NOTE: When this value connects to another PIN, the PL/X uses the pure binary to decimal equivalent (the most significant bit on the right, the least significant on the left).

R ENTRY MENU LEVEL 1

R DIAGNOSTICS 2

R DIGITAL IO MONITOR 3

R 164>DOP 123TRJSC CIP

	1	2	3	т	R	J	S	С
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Function	DOP1	DOP2	DOP3	Therm	Run	Jog	Start	Coast
Terminal	T22	T23	T24	T30	T31	T32	T33	T34

12.6.4 165)+ARM BRIDGE FLAG

Monitor if the positive or negative armature bridge is active.

PIN	Parameter description	Range			
165	POSITIVE ARMATURE BRIDGE FLAG	LOW (- bridge) HIGH (+ bridge)			
		R	ENTRY MENU	LEVEL	1
		R	DIAGNOSTICS		2
		R	DIGITAL IO M	ONITOR	3
12.6.5	166)DRIVE START FLAG		165>+ARM	BRIDGE FL	AG

Monitor the status of the internal drive START (may be set low by alarms).

PIN	Parameter description	Range				
166	DRIVE START FLAG	LOW (off) HIGH (on)				
			R	ENTRY MENU	LEVEL	1
		R		DIAGNOSTICS		2
				DIGITAL IO MON	ITOR	3
				R 166)DRIVE S	TART FL	.AG

12.6.6 167)DRIVE RUN FLAG

Monitor if a command to RUN has been issued to the current loop.

PIN	Parameter description	Range				
167	DRIVE RUN FLAG	LOW (Stop) HIGH (Run)				
			R	ENTRY MENU	LEVEL	1
		R		DIAGNOSTICS		2
			R	DIGITAL IO MON	ITOR	3

R 167)DRIVE RUN FLAG

12.6.7 168)RUNNING MODE MON

(6) SLACK SPEED 1(7) SLACK SPEED 2

Monitor the mode selected by START (T33), JOG (T32) and 42)JOG MODE SELECT.

PIN	Parameter description	Range				
168	RUNNING MODE MONITOR	1 of 7 modes displayed				
The 7 modes (with their numeric codes) displayed are:				ENTRY MENU	LEVEL	1
(0	or 1) STOP	I	R	DIAGNOSTICS		2
(3) CRAWL			R	DIGITAL IO MO	NITOR	3
(4 (5	.) JOG SPEED 1) JOG SPEED 2				G MODE	Mon

The majority of blocks have an output monitor, usually the first parameter in the associated menu.

The outputs are contained in each functional block because, when programming, it is convenient to have the output monitor in the same menu as the relevant adjustment parameters. This menu contains all block outputs grouped for rapid sequential access.

Refer to "17.17 CONFIGURATION / BLOCK OP CONFIG" on page 361 for parameter information.

R ENTRY MENU LEVEL 1

R DIAGNOSTICS 2

BLOCK OP MONITOR 3

21) RAMP OP MONITOR 45)MP OP MONITOR 192)REF XC MASTER MN 401)SUMMER1 OP MON 415)SUMMER2 OP MON 429)PID1 OP MONITOR 452)PID2 OP MONITOR 475) PROFILE Y OP MON 483) DIAMETER OP MON 494) TOTAL TENSION MN 500>TORQUE DEMAND MN 523)PRESET OP MON 560)LATCH OUTPUT MON 568)FILTER1 OP MON 573)FILTER2 OP MON 578)COUNTER COUNT 583) TMR ELAPSED TIME

This menu provides information about the status of the Fieldbus communications.

Refer to the FIELDBUS manual, HG105409EN00.

- R ENTRY MENU LEVEL 1
- R DIAGNOSTICS 2
 - FIELDBUS
 3

 200)FBUS ON-LINE MON
 203)FBUS BITS INPUT

 203)FBUS BITS OUTPUT
 213)FBUS BITS OUTPUT

 223)ANYBUS TYPE
 223)ANYBUS TYPE

13 The MOTOR DRIVE ALARMS menu

WARNING! **PERSONAL INJURY AND/OR** EQUIPMENT DAMAGE HAZARD

Semiconductor electronics deliver all sixteen motor drive alarms. Local safety codes may mandate the use of electro-mechanical alarm systems. Test all alarms in the final application before use. The manufacturer and suppliers of the PL/X are not responsible for system safety.

13.1 MOTOR DRIVE ALARMS

Sixteen alarms continuously monitor the essential parameters of the motor drive system:

- Ten of the alarms are permanently enabled.
- Six of the alarms can be enabled or disabled using this menu.

The PL/X also monitors the alarm status.

Triggering an enabled alarm causes it to latch, shutting down the PL/X and de-energising the main contactor.

If the alarm is disabled, then it is not latched and does not affect the operation of the PL/X, although monitoring is still possible.

There are three monitoring functions for all sixteen alarms:

- 1. An active monitor prior to the alarm latching.
- 2. A monitor of the latched status of the alarm.
- 3. A message displayed to show which alarm has caused the PL/X to shut down. This message automatically appears whenever the PL/X is running. To remove the message from the display, tap the LEFT key or start the PL/X. Re-examine the message using the DRIVE TRIP MESSAGE menu. Removing the control supply will store the message.

The PL/X alarms have a delay timer associated with them such that they only become latched if the fault condition persists for the whole of the delay period. We give values of this delay period for individual alarms.

These times are typical since the delay uses microprocessor "cycle time" units which vary with microprocessor loading. To access the alarms prior to the trigger, use the active monitor window for advance notification.

There is a USER ALARM on hidden parameter 712) USER ALARM INPUT. You can connect this to any flag to trip the PL/X.

- R ENTRY MENU LEUEL 1
- R MOTOR DRIVE ALARMS 2
- 171)SPD TRIP ENABLE R 172)SPEED TRIP TOL
- R 173)FLD LOSS TRIP EN 174)DOP SCCT TRIP EN 175)MISSING PULSE EN 176) REF EXCH TRIP EN
- 177) OUERSPEED DELAY STALL TRIP MENU R 3 181) ACTIVE TRIP MON 182)STORED TRIP MON 183)EXT_TRIP_RESET R
- DRIVE TRIP MESSAGE 3

If an alarm enables, triggers and latches, causing the PL/X to shut down, then after a further 10 ms, no additional alarms will be latched. Hence when monitoring for the latched status of alarms, it is unlikely that more than one alarm will be present.

If more than one alarm is present, use the DRIVE TRIP MESSAGE menu to determine the first alarm to arrive and cause the shutdown.

Figure 56 MOTOR DRIVE ALARMS - block diagram

13.1.1 171)SPD TRIP ENABLE

Enable/disable the speed feedback mismatch TRIP.

PIN	Parameter description	Range	Default
171	SPEED TRIP ENABLE	DISABLED ENABLED	ENABLED

NOTE: Using armature voltage feedback suppresses this alarm.

The PL/X continuously compares the speed feedback to the armature voltage feedback. This alarm operates when the difference between the two is more than the value set by 172) SPEED TRIP TOL.

The PL/X suspends the comparison in the field weakening region (the region where the drive clamps the volts to a maximum value) if 103)FLD WEAK **ENABLE** is enabled. Instead, in this region, it checks if the speed feedback is below 10% of full speed, i.e. 10:1 range. If so, the alarm operates to indicate that it is not practical to start field weakening.

The automatic "switch to AVF" feature allows for continued running, although at the lower accuracy level of Armature Voltage Feedback. The AVF remains the source of feedback until the subsequent STOP / START sequence. The PL/X then restores the original feedback source and resets the alarm reset to allow auto AVF protection once again. It may be necessary to reduce the 172>SPEED TRIP TOL to about 15% if a smooth transfer to auto AVF is required. However, if the threshold is too low then an unwarranted transfer may occur during speed transients.

Hidden parameter 703) SPD FBK WARN signals a speed mismatch after the usual delay time. This flag is reset by the removal of START or JOG. To provide a warning that the auto AVF has occurred, we recommend configuring the flag to a digital output. Usually, the failure of the feedback mechanism triggers the speed feedback mismatch alarm in one of the following ways:

- 1. Disconnection of wiring.
- 2. Failure of the tachogenerator or encoder.
- 3. Failure of the tachogenerator or encoder mechanical coupling.

NOTE: Alarm delay time: 0.4 seconds to TRIP, 0.2 seconds to automatic AVF switch.

Correct setting of 110)MIN FIELD CURRENT should ensure that the overvolts TRIP occurs just above the maximum operating speed.

- R MOTOR DRIVE ALARMS 2
 - 171)SPD TRIP ENABLE R

If 171) SPD TRTP ENABLE is disabled, then an automatic switch to AVF is implemented for tacho and encoder feedback. or both.

R ENTRY MENU LEUFL 1

Feedback type	Fault mode	Result if trip ENABLED	Result if trip DISABLED
Armature Voltage	re Voltage No faults normally possible. Alarm suppressed		Alarm suppressed
	Armature voltage mode selected with field weakening enabled.	Drive TRIP when field weakening region entered.	Drive TRIP when field weakening region entered.
Tacho OR Encoder	Incorrect polarity and 172) SPEED TRIP TOL set to less than approximately 20%	Drive TRIP	Automatic switch to AVF
	Incorrect polarity and 172) SPEED TRIP TOL set to greater than approximately 20%	Drive TRIP	Drive TRIP
	Feedback loss and 172)SPEED TRIP TOL exceeded	Drive TRIP	Automatic switch to AVF
Tacho OR Encoder	Incorrect polarity	Drive TRIP	Drive TRIP
With field weakening	Total feedback loss (<10% signal)	Drive TRIP when field weakening region entered.	Drive TRIP when field weakening region entered.
	Partial feedback loss	Protection limited to armature overvolts TRIP at minimum field current	Protection limited to armature overvolts TRIP at minimum field current
Encoder + Armature Volts OR Encoder + Tacho.	Incorrect encoder and/or tacho polarity and 172)SPEED TRIP TOL set to less than approximately 20%	Drive TRIP	Automatic switch to AVF
	Incorrect encoder and/or tacho polarity and 172)SPEED TRIP TOL set to greater than approximately 20%	Drive TRIP	Drive TRIP
Combinational feedback	Encoder loss and 172)SPEED TRIP TOL exceeded.	Drive TRIP	Automatic switch to AVF. (The speed mismatch may be small because the AVF component is still valid, hence 172)SPEED TRIP TOL must be set low enough to ensure an automatic switch occurs).
	Tacho loss and 172)SPEED TRIP TOL exceeded	Drive TRIP	Automatic switch to AVF
Encoder + Armature Volts OR Encoder +	Incorrect encoder and/or tacho polarity	Drive TRIP	Drive TRIP
Tacho.	Total encoder and/or tacho loss (<10% signal)	Drive TRIP when field weakening region entered.	Drive TRIP when field weakening region entered.
Combinational feedback with field	Partial encoder and/or tacho loss	Protection limited to armature overvolts TRIP at minimum field current	Protection limited to armature overvolts TRIP at minimum field current
weakening	Encoder + Armature voltage mode selected with field weakening enabled	Drive TRIP when field weakening region entered.	Drive TRIP when field weakening region entered.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

The protection provided in field weakening mode is limited to total feedback loss only because the speed/AVF relationship is not maintainable in the field weakening mode. If a partial loss of feedback occurs, the motor may run to excessive speed. When the field is entirely weakened and is at its minimum level, the armature overvoltage trip will operate. It may only occur at dangerous speeds. Therefore, we recommend using a mechanical device, a backup system, or both to protect against this possibility.
13.1.2 172)SPEED TRIP TOL

Set the speed feedback mismatch trip tolerance.

PIN	Parameter description	Range	Default
172	SPEED TRIP TOLERANCE	0.00 to 100.00%	50.00%

If this value is set too low, then spurious alarms may be caused by dynamic lags or non-linear effects.

Mismatched calibration between the AVF calibration, and the calibration of the tacho and encoder or both, erodes this margin.

Hidden parameter **703>SPD FBK WARN** signals a speed mismatch after the normal delay time. A START or JOG command resets this flag.

13.1.3 173)FLD LOSS TRIP EN

Enable/disable the field failure alarm trip.

PIN	Parameter description	Range	Default
173	FIELD LOSS TRIP ENABLE	DISABLED ENABLED	ENABLED

Alarm delay time: 2.00 seconds.

This alarm usually triggers if the field current drops below 20% of the rated current (5% in field weakening mode). Faulty operation of the field controller may also cause a motor field fail alarm. The most frequent cause for the motor field alarm is an open-circuit motor field. If this alarm occurs, check the motor field connections and measure the field resistance.

The resistance of the field = data plate field volts/data plate field current.

CAUTION! EQUIPMENT DAMAGE HAZARD

For rated field currents that are less than 25% of model rating, the alarm threshold may be too low to trigger. Test the alarm. To defeat this problem, set **4**>**RATED FIELD AMPS** to a higher level and **114**>**FIELD REFERENCE** to a lower level to raise the threshold, e.g. set PIN 4 to twice motor rating and PIN 114 to 50.00%.

If the PL/X is feeding a load that requires no field supply, for example, a permanent magnet motor, then set **99)FIELD ENABLE** to DISABLED to automatically inhibit the field fail alarm. R ENTRY MENU LEVEL 1

R ENTRY MENU

R MOTOR DRIVE ALARMS

172)SPEED TRIP TOL

LEVEL

1

2

R 173)FLD LOSS TRIP EN

The MOTOR DRIVE ALARMS menu

13.1.4 174) DOP SCCT TRIP EN

Enable/disable the digital output short-circuit alarm trip.

PIN	Parameter description	Range	Default
174	DIGITAL OUTPUT SHORT-CIRCUIT TRIP ENABLE	DISABLED ENABLED	DISABLED

All digital outputs and the 24 V user supply will withstand a direct short-circuit to 0 V. This will trigger an internal alarm and disable the remaining digital outputs, resulting in low output. (Short-circuit current is approximately 350 mA for digital outputs and 400 mA for +24 V).

The PL/X will continue to run if the alarm is disabled, and the shorting fault has not prevented the normal running of the PL/X.

NOTE: The +24 V terminal T35 will remain active with a capability of 50 mA if any digital output is shorting. Shorting the +24 V output activates the short-circuit alarm, causing all digital outputs to go low. In this case, if the +24 V is being used to enable CSTOP or START, then the PL/X will stop.

13.1.5 175)MISSING PULSE EN

Enable/disable the missing pulse alarm trip.

PIN	Parameter description	Range	Default
175	MISSING PULSE ENABLE	DISABLED ENABLED	ENABLED

Alarm delay: approximately 30 seconds.

The PL/X continuously monitors the armature current waveform. If a fault develops within the PL/X or the armature bridge, one or more pulses may be missing from the normal 6-pulse armature current waveform. Although the PL/X may appear to function normally, the motor will experience excess heating due to the distorted current waveform.

If at least one of the six current pulses is missing from the feedback waveform, and the current demand is above the level set in 95)CUR DISCONTINUITY then the system will start counting missing pulses. The alarm will trigger after a sequential series of missing pulses lasting approximately 30 seconds.

R ENTRY MENU LEVEL 1

ENTRY MENU

MOTOR DRIVE ALARMS

174)DOP SCCT TRIP EN

LEVEL

1

2

R MOTOR DRIVE ALARMS 2 175)MISSING PULSE EN

The most frequent causes of missing pulses are:

- An open circuit main supply fuse.
- Gate lead plug not properly connected after a stack maintenance procedure.
- Failure to perform a current loop autotune.
- Excessive speed feedback ripple.

13.1.6 176) REF EXCH TRIP EN

Enable/disable the REFERENCE EXCHANGE data link alarm trip.

PIN	Parameter description	Range	Default
176	REFERENCE EXCHANGE TRIP ENABLE	DISABLED ENABLED	DISABLED

R ENTRY MENU

R MOTOR DRIVE ALARMS

LEVEL

176) REF EXCH TRIP EN

1

2

Alarm delay: 1.5 seconds.

The PL/X can transmit and receive a speed reference, or any other single parameter, to or from another drive using the serial port.

During the receive cycle, the PL/X checks that the data received is valid. Invalid data will raise the alarm. It only applies when operating in SLAVE mode. Refer to the PL/X Serial Communications Manual, HG105289EN00. (RS232 PORT 1). The alarm flag is available on hidden parameter 701) REF XC WARNING.

13.1.7 177)OVERSPEED DELAY

Set the delay time before the overspeed alarm is latched.

PIN	Parameter description	Range			Defau	ılt	
177	OVERSPEED DELAY	0.1 to 600.0 s	seco	nds	5.0 se	conds	
Refer t MESSA	o "13.3 MOTOR DRIVE ALARMS / DRIVE GE" on page 234 - OVERSPEED .	TRIP	R E	INTRY	MENU DRIVE >OVERSI	LEVEL ALARMS PEED DELA	1 2 1

13.1.8 181)ACTIVE TRIP MON

Monitor the status of the 16 active alarms (4 groups of 4 in HEX code) - prior to latch.

PIN	Parameter description	Range				
181	ACTIVE TRIP MONITOR	Refer to table b	pelow.			
		R	ENTRY	MENU	LEVEL	1
		R	MOTOR	DRIVE A	ALARMS	2
			181	ACTIVE	TRIP MO	N

13.1.9 182)STORED TRIP MON

Monitor the status of the 16 active alarms (4 groups of 4 in HEX code).

182 STORED TH	TRIP MONITOR	Refer to table below.

The four characters in the window are HEX codes. Codes 0, 1, 2, 4, 8 are the most likely. Other codes only occur when two or more alarms are active in any group. The table below shows HEX code binary equivalents and how you can decode them to binary logic into sixteen flags from right to left, in four groups of four.

HEX Code	Binary	HEX Code	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

NOTE: When this value connects to another PIN, then the pure binary to decimal equivalent is used (the most significant bit on the right, the least significant on the left).

LEVEL

1

2

R ENTRY MENU

R MOTOR DRIVE ALARMS

182)STORED TRIP MON

Example display:

0005 shows ARMATURE OVERCURRENT and OVERSPEED 0060 shows FIELD LOSS and MISSING PULSE.

NOTE: There is an Application Block called 16–BIT DEMULTIPLEX which can extract a flag for each of these Alarms. Refer to "16. The		HEX I decode	HEX I decode	HEX decode	HEX I decode	
APPLICATION BLOCKS m	nenu" on page 245	0 000	0 0 00	00 0 00	000 0	
for more detail.		9	8	0	5	Example displays
List of motor alarms	Bits for 16-BIT DEMULTIPLEX Application Block	0	10	0	1.1	
ARMATURE OVERCURRENT SPEED FBK MISMATCH OVERSPEED ARMATURE OVERVOLTS	Bit 1 Bit 2 Bit 3 Bit 4				000 1 0010 0 1 00 1000	
FIELD OVERCURRENT FIELD LOSS MISSING PULSE STALL TRIP	Bit 5 Bit 6 Bit 7 Bit 8			0001 00 1 0 0 1 00 1000		
THERMISTOR ON T30 HEATSINK OVERTEMP SHORT CCT DIG OP BAD REFERENCE EXCH	Bit 9 Bit 10 Bit 11 Bit 12		0001 0010 0100 1000			
CONTACTOR LOCK OUT USER ALARM INPUT (PIN 712) SYNCHRONIZATION LOSS SUPPLY PHASE LOSS	Bit 13 Bit 14 Bit 15 Bit 16	0001 0010 0100 1000				

13.1.10 183)EXT TRIP RESET

Enable/disable the trip to be reset by START on T33 going low.

PIN	Parameter description	Range	Default
183	EXTERNAL TRIP RESET	DISABLED ENABLED	ENABLED

When DISABLED, this prevents re-starting after a trip.

R MOTOR DRIVE ALARMS

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

Do not rely on the action of parameter 1833EXT TRIP RESET for safety. 183)EXT TRIP RESET

13.2 MOTOR DRIVE ALARMS / STALL TRIP MENU

Refer to"11.11.1.1 Achieving overloads >150%" on page 177. In this case, you must set 179)STALL CUR LEVEL set below 82>0 / LOAD % TARGET for stall protection.

- R ENTRY MENU LEVEL 1
- MOTOR DRIVE ALARMS 2

3

R STALL TRIP MENU

- R 178)STALL TRIP ENBL
- 179)STALL CUR LEVEL R
- 180)STALL DELAY TIME R

13.2.1 178)STALL TRIP ENBL

Enable/disable the motor stall alarm trip.

PIN	Parameter description	Range	Default
178	STALL TRIP ENABLE	DISABLED ENABLED	ENABLED

Some DC motors are not capable of carrying large amounts of current when stationary. If the current exceeds a particular limit and the motor is static, the PL/X can provide this stall trip alarm.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DÁMAGE HAZARD

When using armature voltage feedback, the IR drop may be sufficient to provide a signal in excess of 117)ZERO INTLK SPD % preventing the stall alarm from operating. To rectify, set 14> IR COMPENSATION as accurately as possible; then test the alarm with a stalled motor (disable the field); progressively increase current limit to above the 179) STALL CUR LEVEL; now check that the AV speed feedback remains below 117) ZERO INTLK SPD *. It may be necessary to increase 117) ZERO INTLK SPD % to ensure tripping.

R	ENTRY	MENU	LEVEL	1
_			-	~

- R MOTOR DRIVE ALARMS 2
- 3 R STALL TRIP MENU
 - 178)STALL TRIP ENBL R

The alarm is activated if:

- 178)STALL TRIP ENBL is enabled
- and the current is above 179) STALL CUR LEVEL
- and the motor is at zero speed (below ZERO INTERLOCKS / 117)ZERO **INTLK SPD %**) for longer than 180) STALL DELAY TIME.

13.2.2 179)STALL CUR LEVEL

Set the stall alarm trip LEVEL as a % of rated motor Amps.

PIN	Parameter description	Range		Defau	lt	
179	STALL CURRENT LEVEL	0.00 to 150.00	95.00%	95.00%		
		R	ENTRY	MENU	LEVEL	1
		R	MOTOR	DRIVE A	ILARMS	2
		R	STALL	TRIP ME	:NU	3
			r 179	STALL	CUR LEVEL	-

13.2.3 180)STALL DELAY TIME

Set the delay time between stall being detected and alarm trigger.

PIN	Parameter description	Range	Default			
180	STALL DELAY TIME	0.1 to 600.0 se	10.0 seconds			
		R	ENTRY	MENU	LEVEL	1
		R	MOTOR	DRIVE P	ALARMS	2
		R	STALL	TRIP ME	ENU	3
			r 180	STALL	DELAY TI	ME

13.3 MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE

The name of the active alarm that triggers the PL/X to shut down is stored and displayed. For example, the PL/X may show the following:

- R ENTRY MENU I FUFL 1
- R MOTOR DRIVE ALARMS 2
 - DRIVE TRIP MESSAGE 3

1	!!	1	Ŀ	!	ALI	ARM	1	ļ	ļ	Į.	ļ	ļ	Į.	
	T	HE	R	M	IST	'OR	٥ŀ	1	٦		50	9		

- To clear the alarm from the display, tap the LEFT key or start the PL/X.
- To see the last alarm, view the DRIVE TRIP MESSAGE menu. This menu will store this alarm even after removing the control supply.
- To remove the stored last alarm, view the DRIVE TRIP MESSAGE menu and tap the DOWN key.

If no alarm is triggered or stored, the DRIVE TRIP MESSAGE menu will display:

The following alarms may be triggered:

DRIVE TRIP MESSAGE : Alarms

Alarm delay time: 1.5 seconds.

This alarm operates for current feedback values exceeding 170% of the maximum model current, or 300% of 2)RATED ARM AMPS, whichever occurs first.

Motor Faults: If the motor armature windings fail, the armature impedance may drop sharply. It may cause excessive armature current, which will activate the current trip. If this occurs, check the motor armature insulation resistance (using a Megger), which must be above acceptable limits. (Disconnect the PL/X when using a Megger). If the motor becomes completely short-circuited, the current trip will not protect the PL/X. Always provide high-speed semiconductor thyristor fusing to protect the thyristor stack.

Alarm delay time: The alarm will allow 300% loading for approximately 10 ms and 400% for 5 ms.

This alarm operates if the motor armature voltage feedback exceeds 18) RATED ARM VOLTS by more than 20%. 18)RATED ARM VOLTS may be lower than the data plate maximum. This alarm operates with any source of speed feedback.

The causes for this alarm can be a poorly adjusted field voltage setting, field current loop, field-weakening back emf loop or speed loop overshooting.

!!!!!! ALARM !!!!!!! ARMATURE OVERCURRENT

R

!!!!!! ALARM !!!!!!! ARMATURE OVERVOLTS

The MOTOR DRIVE ALARMS menu

DRIVE TRIP MESSAGE : Alarms	Q			
Alarm delay time: 15 seconds.	IIIII ALARM IIIIII			
The PL/X checks that the field current does not exceed 115% of 4)RATED FIELD AMPS .	FIELD OVERCURRENT			
Regulator failure, or a poorly tuned control loop causing overshoots, can cause this alarm to activate.				
Alarm delay time: 2 seconds.	IIIII ALARM IIIIII			
Refer to "13.1.3 173)FLD LOSS TRIP EN" on page 227.	FIELD LOSS			
Alarm delay time: 0.5 seconds.	IIIII ALARM IIIIII			
Hidden PIN 712 will cause a trip if it goes high.	USER TRIP			
Use a jumper to connect to the flag source. Refer to "17.16 CONFIGURATION / JUMPER CONNECTIONS" on page 360.				
Alarm delay time: 10 seconds.	IIIII ALARM IIIIII			
This alarm operates if the resistance between T30 and T36 exceeds 1800 Ohm.	THERMISTOR ON T30			
 There is no motor temperature alarm inhibit. You must link terminals T30 and T36 if you are not fitting sensors. Temperature-sensitive resistors have low resistance (typically 200 Ω) up to a reference temperature of 125°C. Above this, their resistance rises rapidly to greater than 2000 Ω. Temperature switches are usually normally-closed, opening at about 105°C. NOTE: Hidden parameter 702>THERMISTOR WARN signals a thermistor over-temperature after the normal delay time. A START or JOG command resets this flag. 	 Motors overheat due to many factors, but the most common cause is inadequate ventilation. Check for: Blower failure. Incorrect rotation of the blower. Ventilation slots blocked. Air filters clogged. Other causes of overheating relate to excessive field current and excessive armature current: Check the nominal armature current on the motor nameplate against the current calibration for the PL/X. 			
	cool before restarting the PL/X.			

DRIVE TRIP MESSAGE : Alarms	R
Alarm delay time: 0.5 seconds + 177)OVERSPEED DELAY (Refer to "13.1.7 177)OVERSPEED DELAY" on page 229).	IIIIII ALARM IIIIIII OVERSPEED
This alarm operates if the speed feedback signal exceeds 110% of the rated speed for longer than the alarm delay time.	
A likely cause for the alarm is a poorly adjusted speed loop or the overhauling of motors controlled by 2-quadrant models.	
This alarm operates if trying to field weaken with armature voltage feedback mode selected.	!!!!!! Alarm !!!!!! Speed FBK Mismatch
A likely cause for the alarm is incorrect tacho polarity, scaling and encoder scaling.	
Refer to "13.1.1 171)SPD TRIP ENABLE" on page 225.	
This alarm operates if the current exceeds a particular limit and the motor is stationary.	IIIIII ALARM IIIIIII STALL TRIP
Refer to "13.2.1 178)STALL TRIP ENBL" on page 232.	
This alarm operates after a sequential series of missing pulses lasting for approximately 30 seconds.	IIIII ALARM IIIIII MISSING PULSE
Refer to "13.1.5 175)MISSING PULSE EN" on page 228.	
Alarm delay time: 2.0 seconds. 11. This alarm operates if the EL1 and/or EL2	IIIIII ALARM IIIIIII SUPPLY PHASE LOSS
supplies are lost at any time START or JOG is made. The incoming supply of the EL1, EL2 connections are continuously monitored. The subsequent control action depends on the running condition at the time the alarm is triggered. The main contactor de-energises after the ride- through time of 2 seconds elapses if energised at the time of the failure. Restoring the supply before the ride-through time elapses resumes normal running. During the temporary supply loss period, the PL/X will shut off the armature current demand until it is safe to restore. The PL/X measures the back emf to calculate a safe start into the rotating load. If the main contactor de-energises at the time	 In the case of a supply phase loss alarm, check: The supply to the PL/X. The auxiliary and main high-speed semiconductor fuses. Refer to "10.7 Supply loss shutdown" on page 106. The PL/X monitors the supply on EL1/2, allowing using AC supply or DC outgoing main contactors.
of the supply loss, then a Start command will allow the contactor to energise but inhibits the armature current. After a few seconds, the contactor will be de-energised.	

DRIVE TRIP MESSAGE : Alarms

Continued...

The Control Supply on T52 and T53 can tolerate a supply loss for 300 ms at 240 Vac, and 30 ms at 110 Vac, before requesting permanent shut down. Refer to "11.1.14 19)EL1/2/3 RATED AC" on page 125.

The PL/X will detect a total failure of the supply and a missing phase under most circumstances. However, the PL/X may be sharing a supply with other equipment that is regenerating a voltage onto the supply lines during the missing phase period. Under these circumstances, the SUPPLY PHASE LOSS alarm may be unable to detect the failure of the incoming supply and hence not operate.

Alarm delay time: 0.5 seconds.

This alarm operates if the supply frequency exceeds the minimum/maximum limits or if the PL/X uses a power supply having excessive distortion, causing synchronisation errors.

The PL/X automatically "locks on" to any 3-phase supply within a frequency range of 45 to 65 Hertz. It allows the thyristors to fire at the correct instant during each supply cycle. The synchronisation circuit can cope with a sizeable level of supply distortion to ensure operation with very distorted supplies. The lock-on time is 0.75 seconds. By adopting the standard wiring configuration with EL1/2/3 permanently energised, the phase lock only needs to lock on during the first application of power, enabling the main contactor to be operated very rapidly with minimal start-up delay if required.

SUPPLY PHASE LOSS

MOTOR DRIVE ALARMS 2 SYNCHRONIZATION LOSS

Wiring configurations that involve the application of the auxiliary supply coincident with a start requirement will have 0.75 second delay prior to main contactor energisation.

NOTE: This alarm will operate during running. If there is a failure to achieve synchronisation at Start, then the alarm CONTACTOR LOCK OUT is displayed. Refer to "13.3 MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE" on page 234 - CONTACTOR LOCK OUT.

DRIVE TRIP MESSAGE : Alarms

Alarm delay time: 0.75 seconds.

This alarm operates if there is a blower failure or restriction of the cooling airflow causing the heatsink temperature to rise to an unacceptable level.

- If this alarm operates on PL/Xs fitted with a heatsink blower, check the unit and cooling air path for obstructions.
- Models with twin top-mounted fans have fan stall protection. Removing an obstruction should restart the fan. If the fan does not run, replace the fan assembly.
- For PL/Xs with an AC-driven rear-mounted fan (PL/X 185/225/265), check that the 110 Vac fan supply is present on terminals B1, B2.
- For PL/X 275 980, check that the 240 Vac fan supply is present on the terminals provided under the lower connection cover.

This alarm operates if a digital output experiences a short circuit.

Refer to "13.1.4 174)DOP SCCT TRIP EN" on page 228.

This alarm operates if the PL/X receives invalid data.

Refer to "13.1.6 176) REF EXCH TRIP EN" on page 229.

NOTE: Hidden parameter 701) REF XC WARNING signals a bad reference exchange.

This alarm operates if, during the autotune activity, speed feedback is >20% of rated speed, or field current feedback is >5% of rated field current.

During Autotune, the PL/X turns off the field to prevent shaft rotation.

NOTE: Speed feedback being >20% may be caused by residual field magnetisation resulting in shaft rotation. If so, retry the Autotune with the motor shaft being mechanically locked.

!!!!!! ALARM !!!!!!! HEATSINK OVERTEMP

- Always supply the PL/X enclosure with sufficient cool. dry clean air. Refer to "10 Technical specifications" on page 91.
- The PL/X must be allowed to cool before attempting to restart.

!!!!!! ALARM !!!!!!! BAD REFERENCE EXCH

!!!!!! ALARM !!!!!!!

DIGITAL OP SHORTED

MOTOR DRIVE ALARMS 2 CANNOT AUTOTUNE

DRIVE TRIP MESSAGE : Alarms

This alarm operates if the User aborts Autotune:

- It quits the Autotune function if the coast stop, start or run terminals are disabled (taken low).
- It quits if the ANDED START or ANDED RUN is taken low.
- Alternatively, this message displays if 92> AUTOTUNE ENABLE is DISABLED during its Autotune sequence. Refer to "11.10.6 92) AUTOTUNE ENABLE" on page 171.
- Autotune aborts if the Autotune function times out (after approximately 2 minutes).

Two events may cause this alarm to trigger when RUN is requested:

- The incoming 3-phase supply may be of insufficient quality to allow the synchronisation circuit to measure its frequency and phase rotation, or both. It may be due to an intermittent or missing phase on EL1/2/3.
- The ZERO REFERENCE interlock function is enabled, but the operator fails to reset the external speed references to zero. Refer to "11.15 CHANGE PARAMETERS / ZERO INTERLOCKS" on page 192.

On triggering the alarm, the current loop inhibits, followed by de-energisation of the contactor.

MOTOR DRIVE ALARMS 2 AUTOTUNE QUIT

CONTACTOR LOCK OUT

ß

14 The SERIAL LINKS menu

NOTE: We retain references to PL PILOT and early Windows PCs in this manual for users with older PL/Xs. A Recipe (backed-up configuration) created in the legacy Pilot configuration tool is not (necessarily) the same as one of the three Recipe pages described on Page 363.

WARNING! PERSONAL INJURY AND/OR EQUIPMENT DAMAGE HAZARD

The PL/X suspends Comms operation while in CONFIGURATION mode. Refer to "17 The CONFIGURATION menu" on page 323 and "17.2.1 CONFIGURATION / ENABLE GOTO,GETFROM" on page 325.

The Serial Links Manual, HG105289EN00, describes how to identify the PL/X and establish a connection with the host PC or DCS.

It shows how to configure the PL/X to:

- Remotely control one or more PL/Xs from a host computer using a serial link.
- Configure one or more PL/Xs using "drive.web® savvy®", a PC based configuration tool.

The FIELDBUS manual, HG105409EN00, describes using the FIELDBUS board and installing the Anybus CompactCom module to:

 Communicate using a variety of Fieldbus protocols by fitting an AnybusCompactCom module.

NOTE: Port1 is a non-isolated RS232 port used for PL/X configuration and serial communications.

- R ENTRY MENU LEVEL 1 R SERIAL LINKS 2
- R RS232 PORT1

- R 187>PORT1 BAUD RATE 188>PORT1 FUNCTION PARAMETER EXCHANGE 4 REFERENCE EXCHANGE 4 PORT1 COMMS LINK 4
- R ENTRY MENU LEVEL 1
 - CONFIGURATION 2
 - FIELDBUS CONFIG 3

		-
JUMPER	1	4
JUMPER	2	4
JUMPER	3	4
JUMPER	4	4
JUMPER	5	4
JUMPER	6	4
JUMPER	7	4
JUMPER	8	4
BIT-PA	CKED GETFROM	
JUMPER	9	4
JUMPER	10	4
JUMPER	11	4
JUMPER	12	4
JUMPER	13	4
JUMPER	14	4
JUMPER	15	4
JUMPER	16	4
BIT-PA	CKED GOTO	
199)FBI	JS DATA CONTI	RL

15 The DISPLAY FUNCTIONS menu

Use this menu to adjust the display presentation, provide password control, select a display language, and display the software version.

15.1 DISPLAY FUNCTIONS

The REDUCED MENU shows only the more commonly used parameters, and this will help you navigate the menu structure more rapidly.

- R ENTRY MENU LEVEL 1
- R DISPLAY FUNCTIONS 2
 - REDUCED MENU ENABLE R
 - PASSWORD CONTROL R 3 LANGUAGE SELECT
 - SOFTWARE VERSION R

15.1.1 REDUCED MENU ENABLE

Enable/disable the reduced menu display.

Parameter description	Range	Default
REDUCED MENU ENABLE	DISABLED ENABLED	DISABLED

- R ENTRY MENU LEVEL 1
- R DISPLAY FUNCTIONS 2
 - R REDUCED MENU ENABLE

15.1.2 LANGUAGE SELECT

Select display language.

Parameter description	Range	Default
LANGUAGE SELECT	0 : ENGLISH 1-3 not in use	ENGLISH

In the future, this parameter will select an alternative display language.

R	ENTRY	MENU	LEVEL	1
R	DISPLE	Y FUNCT	IONS	2

LANGUAGE SELECT

15.1.3 SOFTWARE VERSION

The software version of the installed code.

Parameter descript	ion Ra	ange				
SOFTWARE VERSION	Ve	ersion numbe	r			
		R		MENU AY FUNCT: TWARE VE	LEVEL IONS RSION	1

15.2 DISPLAY FUNCTIONS / PASSWORD CONTROL

The password will prevent alteration by unauthorised users.

The default password and power-up entry are set to **0000**, thereby unlocking the PL/X.

- If you change the password, you must perform a PARAMETER SAVE to store it.
- You must enter the correct password to make parameter changes.
- An incorrect password flashes the message ENTER PASSWORD when pressing the UP/DOWN keys. Refer also to "17.19.1 677)RECIPE PAGE" on page 363.
- Even though each Recipe page can have a separate password, we recommend using the same password to avoid confusion.
- The password from a source page is included with the file when using parameter exchange for use by the Recipe page of the receiving drive. Managing this requires careful housekeeping.

NOTE: PL PILOT software, **188>PORT1 FUNCTION** and **187>PORT1 BAUD RATE** are not subject to password control. Therefore, you can overcome the problem of forgotten passwords by using the PL PILOT config tool to save the Recipe, which you can then reload after the password has been restored to **0000** on the Recipe page NORMAL RESET, using a 4-KEY RESET. Refer to "9.3 Restoring parameters to default conditions" on page 79.

If you have lost your password, contact Sprint Electric for assistance.

- R ENTRY MENU LEVEL 1
- R DISPLAY FUNCTIONS 2
 - R PASSWORD CONTROL 3
 - R ENTER PASSWORD
 - R ALTER PASSWORD

15.2.1 ENTER PASSWORD

Enter the correct password here to unlock the parameters.

	Parameter description Range			Default		
	ENTER PASSWORD	0000 to FFFF		0000		
 Ent PAS Ent PAS 	ering a correct password causes ALTER SSWORD to display the password. ering an incorrect password causes ALTE SSWORD to display **** .	R		1ENU / FUNCT R PASSI	LEVEL IONS JORD	1
Each F "17.19	Recipe page may have its own password. 1 677)RECIPE PAGE" on page 363.	Refer to				

15.2.2 ALTER PASSWORD

Set a new password here to unlock the parameters.

	Parameter description	Range		Defaul	t	
	ALTER PASSWORD	0000 to FFFF		0000		
To set a new password:				IENU	LEVEL	1
1. In ENTER PASSWORD, enter the existing password.			DISPLAY	FUNCT	IONS	2
2. In ALTER PASSWORD, enter your new password.				R PASSI	IORD	
The	new password is active immediately. ENTE					

Now perform a PARAMETER SAVE to store the new password.

PASSWORD now displays the new password.

16 The APPLICATION BLOCKS menu

The PL/X contains a comprehensive range of extra system application blocks. Use these to create complex control applications.

When application blocks are processed, the workload on the internal microprocessor increases:

- With no application blocks activated, the time taken to perform all the necessary tasks (cycle time) is approximately 5 ms.
- With all the application blocks activated, the cycle time is approximately 10 ms.

With these timings in mind, we recommend that external logic signals are stable long enough to be recognised. The logic input, minimum dwell time, has been specified at 50 ms to achieve this. Much lower dwell times than this are possible for straightforward installations where the cycle time is less. However, the risk is that a future re-configuration of the blocks might increase the cycle time sufficiently to cause sampling problems.

Logic levels

Logic inputs will recognise the value zero (any units) as a logic LOW. All other numbers, including negative numbers, will be recognised as a logic HIGH.

Activating blocks

Refer to "9.1 Configuring the drive" on page 77 for information about activating blocks and connecting parameters.

Order of processing

The table below shows the block processing order within each cycle.

1	C/O switch 1-4	7	Taper Tension Calc	13	Batch Counter
2	Multi-function 1-8	8	Summer 2 (output maths)	14	Interval Timer
3	Summer 1 & 2 (input deadband)	9	Torque Compensator	15	Filter 1 & 2
4	PID 1 & 2	10	Preset Speed	16	Comparator 1-4
5	Summer 1 (output maths)	11	Parameter Profiler	17	16-Bit Demultiplex
6	Reel Diameter Calc	12	Latch	18	LP Filter

forward vever, the	TORQUE COMPENSATOR PRESET SPEED	3 3 7
ampling	MULTI-FUNCTION 2	3
	MULTI-FUNCTION 3	3 3
	MULTI-FUNCTION 5	3
/ Iding	MULTI-FUNCTION 6	3
ic HIGH.	MULTI-FUNCTION 7	3
	MULTI-FUNCTION 8	3
	LATCH	3
	FILTER 1	3
	FILTER 2	3
	BATCH COUNTER	3
	INTERVAL TIMER	3
	COMPARATOR 1	3
	COMPARATOR 2	3
77 for	COMPARATOR 3	3
// IOF	COMPARATOR 4	3
	C∕O SWITCH 1	3
	C∕O SWITCH 2	3
	C∕O SWITCH 3	3
order	C∕O SWITCH 4	3
	16-BIT DEMULTIPLEX	3
r Tension Calc	13 Batch Counter	

R ENTRY MENU

APPLICATION BLOCKS

PARAMETER PROFILER 3

REEL DIAMETER CALC 3

TAPER TENSION CALC 3

SUMMER 1

SUMMER 2

PID 1

PID 2

LEVEL

1

2

3

3

3

3

Program a general-purpose signal summing and scaling block. There are two identical, independent SUMMER blocks. They identify by the suffix 1 and 2. This description shows only the PINs for SUMMER1.

Parameter	SUMMER 1	SUMMER 2
OP MON	401	415
SIGN1	402	416
SIGN2	403	417
RATIO1	404	418
RATIO2	405	419
DIVIDER1	406	420
DIVIDER2	407	421
INPUT1	408	422
INPUT2	409	423
INPUT3	410	424
DEADBAND	411	425
OP INVRT	412	426
CLAMP	413	427

The GOTO of this block resides in the CONFIGURATION/BLOCK OP CONFIG menu - refer to Page 361.

There are two hidden PINs in each block for CH2 and CH1 subtotal outputs.

SUMMER1: Hidden PINs 691 CH2 and 692 CH1

SUMMER2: Hidden PINs 693 CH2 and 694 CH1

PINs 401 and 415 are outputs (monitors). Connect the block's GOTO to have the SUMMER block calculate the output.

16.1.1 401)SUMMER 1 OP MON

Monitor the final total output value of the SUMMER1 block.

PIN	Parameter description	Range
401	SUMMER 1 OUTPUT MONITOR	±200.00%

- R ENTRY MENU LEVEL 1
 - APPLICATION BLOCKS 2
 - SUMMER 1 3 401)SUMMER1 OP MON

Figure 57 SUMMER1, SUMMER 2 - block diagrams

16.1.2 402)SUMMER1 SIGN1

Invert the signal arriving at Input 1.

PIN	Parameter description	Range	Default
402	SUMMER1 SIGN1	INVERT NON-INVERT	NON-INVERT

R ENTRY MENU LEVEL 1

APPL	ICAT	ION	BLOCKS	2

SUMMER 1 3

402>SUMMER1 SIGN1

16.1.3 403)SUMMER1 SIGN2

Invert the signal arriving at Input 2.

PIN	Parameter description	Range	Default
403	SUMMER1 SIGN2	INVERT NON-INVERT	NON-INVERT

R ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2 SUMMER 1 3 403>SUMMER1 SIGN2

16.1.4 404)SUMMER1 RATIO1

Set the ratio value for the signal arriving at Input 1.

PIN	Parameter description	Range	Default
404	SUMMER1 RATIO1	±3.0000	1.0000

R	ENTRY MENU	LEVEL	1
	APPLICATION	BLOCKS	2

SUMMER	1		3
404150	MEP 1	POTIOI	

16.1.5 405)SUMMER1 RATIO2

Set the ratio value for the signal arriving at Input 2.

PIN	Parameter description	Range	Default
405	SUMMER1 RATIO2	±3.0000	1.0000

- R ENTRY MENU LEVEL 1
 - APPLICATION BLOCKS 2
 - SUMMER 1 3

405)SUMMER1 RATIO2

16.1.6 406)SUMMER1 DIVIDER1

Set the divisor for the signal arriving at Input 1.

	PIN	Parameter description	Range		Defaul	t	
	406	SUMMER1 DIVIDER1	±3.0000		1.0000		
A	zero	gives zero output.	I	R ENTRY M APPLICE	IENU ITION BI ER 1	LEVEL LOCKS	1 2 3
				_406>	SUMMERI		R1

16.1.7 407)SUMMER1 DIVIDER2

Set the divisor for the signal arriving at Input 2.

	PIN	Parameter description	Range			Defa	ult	
	407	SUMMER1 DIVIDER2	±3.0000			1.000	00	
F	zero	gives zero output.	R	R	ENTRY M	IENU	LEVEL	1
					APPLICA	TION	BLOCKS	2
					SUMM	ER 1		3
					407)	SUMME	R1 DIVIDE	R2

16.1.8 408)SUMMER1 INPUT1

Set the value for Input 1.

PIN	Parameter description	Range	Default
408	SUMMER1 INPUT1	±300.00%	0.00%

- R ENTRY MENU LEVEL 1
 - APPLICATION BLOCKS 2
 - SUMMER 1 3

408>SUMMER1 INPUT1

16.1.9 409)SUMMER1 INPUT2

Set the value for Input 2.

PIN	Parameter description	Range			Defaul	t		
409	SUMMER1 INPUT2	±300.00%	±300.00%		0.00%			
			R	ENTRY	MENU	LEVEL	1	
		i		APPI	APPLIC	ATION B	LOCKS	2
				SUM	MER 1		3	
				_4093	SUMMER	1 INPUT2		

16.1.10 410)SUMMER1 INPUT3

Set the value for Input 3.

PIN	Parameter description	Range	Default
410	SUMMER1 INPUT3	±300.00%	0.00%

R ENTRY MENU LEVEL 1

APPLICATION BLOCKS 2

410)SUMMER1 INPUT3

16.1.11 411)SUMMER1 DEADBAND

Set ±% deadband width, centred on 0.00%, for Input 1.

PIN	Parameter description	Range		Defau	lt	
411	SUMMER1 DEADBAND	0.00 to 100.00%		0.00%		
		R EN	TRY M	IENU	LEVEL	1
		API	PLICA	TION B	LOCKS	2

SUMMER 1 3

411)SUMMER1 DEADBAND

16.1.12 412)SUMMER1 OP INVRT

Invert the output signal from the SUMMER1 block.

PIN	Parameter description	Range	Default
412	SUMMER1 OUTPUT INVERT	INVERT NON-INVERT	NON-INVERT

R	E	NTRY	MENU		LEVI	EL	1
	Al	PPLI	CATIO	N BL	OCK	3	2
		SUM	IMER	1			3
		412	2)SUM	MER1	OP	INVR	RT

16.1.13 413)SUMMER1 CLAMP

Set the value of a symmetrical clamp for Input 1, Input 2 and Output.

PIN	Parameter description	Range		Default		
413	SUMMER1 CLAMP	0.00 to 200.009	%	105.00%		
		R	ENTRY M	1ENU	LEVEL	1
			APPLICA	TION B	_OCKS	2
			SUMM	ER 1		3
			413>	SUMMERI	CLAMP	

16.2 APPLICATION BLOCKS / PID 1, 2

The PID block performs the function of a classical PID to allow the implementation of an external control loop. Typical uses are Dancer Arm, Loadcell Tension, Centre Driven Winding.

There are two identical, independent PID blocks. They identify by the suffix 1 and 2. This description shows only the PINs for PID1.

R

Parameter	PID 1	PID 2
OP MONITOR	429	452
INPUT1	430	453
RATIO1	431	454
DIVIDER1	432	455
INPUT2	433	456
RATIO2	434	457
DIVIDER2	435	458
PROP GAIN	436	459
INTEGRAL TC	437	460
DERIV TC	438	461
FILTER TC	439	462
INT PRESET	440	463
PRESET VAL	441	464
RESET	442	465
POS CLAMP	443	466
NEG CLAMP	444	467
PID1 OUTPUT TRIM	445	468
PROFL MODE	446	469
MIN PROP GN	447	470
X-AXIS MIN	448	471
PROFILED GN	449	472
CLAMP FLAG	450	473
ERROR MON	451	474

E	NTRY	MENU	LEVEL	1
A		CATION	BLOCKS	2
	PIC) 1		3
	429	PID1	OP MONIT	OR
	430	DPID1	INPUT1	
	431	>PID1	RATI01	
	432	2>PID1	DIVIDER1	
	433	SPID1	INPUT2	
	434	OPID1	RATI02	
	435	SPID1	DIVIDER2	
	436	SPID1	PROP GAI	Ν
	_437	'>PID1	INTEGRAL	. TC
	438	>PID1	DERIV TO	:
	439	>>PID1	FILTER T	C
	_ 440	DPID1	INT PRES	EΤ
	_441	>PID1	PRESET V	AL
	_442	2>PID1	RESET	
	_443	SPID1	POS CLAM	IP
	_444	DPID1	NEG CLAM	IP
	_445	SPID1	OUTPUT T	RIM
	_446	SPID1	PROFL MO	DE
	_447	')PID1	MIN PROP	GN
	_448	>>PID1	X-AXIS M	IIN
	PIC)1 X-AX	KIS GET F	ROM

Features:

- Independent adjustment and selection of P, I, D.
- Scaling of feedback and reference inputs.
- · Adjustable filter.
- Preset mode for the integral term.
- Output scaler with independent ± limit clamps.
- Built-in gain profiling option. •

The GOTO of this block resides in the CONFIGURATION/BLOCK OP CONFIG menu - refer to Page 361.

449)PID1 PROFILED GN 450)PID1 CLAMP FLAG 451)PID1 ERROR MON

16.2.1 429)PID1 OP MONITOR

Monitor the final output of the PID1 block.

PIN	Parameter description	Range
429	PID1 OUTPUT MONITOR	±300.00%

LEVEL R ENTRY MENU 1

APPLICATION BLOCKS 2

PID 1 3 429)PID1 OP MONITOR

16.2.2 430)PID1 INPUT1

Set the value for PID Input 1.

PIN	Parameter description	Range	Default
430	PID1 INPUT1	±300.00%	0.00%

This is normally the PID reference.

R	ENTRY	MENU	LEVE	_ 1
	APPLIC	CATION	BLOCKS	2
	PID	1		3
	430	OPID1	INPUT1	

16.2.3 431)PID1 RATIO1

Set the scaling factor for the PID Input 1 value.

PIN	Parameter description	Range			Defaul	t	
431	PID1 RATIO1	±3.0000			1.0000		
			R	ENTRY M	1ENU	LEVEL	1
		APPL		APPLICA	ATION B	LOCKS	2
				PID	1	3	
				431)	PID1 RA	AT I O 1	

16.2.4 432)PID1 DIVIDER1

Set the divisor for the Input 1 signal channel.

PIN	Parameter description	Range	Default
432	PID1 DIVIDER1	±3.0000	1.0000

Zero gives	s a	zero	output.
------------	-----	------	---------

R	E	ITRY	MENU	LEVEL	- 1
	Al	PPLIC	CATION	BLOCKS	2
		PID	1		3
		432	OPID1	DIVIDER	1

16.2.5 433)PID1 INPUT2

Set the value for PID Input 2.

PIN	Parameter description	Range	Default
433	PID1 INPUT2	±300.00%	0.00%

This is normally the PID feedback.

R	ENTRY MENU	EVEL 1
	APPLICATION BLC)CKS 2
	PID 1	3
	433)PID1 INP	UT2

16.2.6 434)PID1 RATIO2

Set the scaling factor for the PID Input 2 value.

PIN	Parameter description	Range	Default
434	PID1 RATIO2	±3.0000	1.0000

R	Eł	ITRY	MENU	LEVE	L	1
	AF	PPLIC	CATION	BLOCKS		2
		PIC	1		3	
		434	PID1	RATI02		

16.2.7 435)PID1 DIVIDER2

Set the divisor for the Input 2 signal channel.

PIN	Parameter description	Range			Defau	lt	
435	PID1 DIVIDER2	±3.0000			1.0000)	
Zero gi	ves a zero output.		R	ENTRY APPLIC PID 4353	MENU ATION 1 >PID1 [LEVEL BLOCKS 3 DIVIDER2	1 2

16.2.8 436)PID1 PROP GAIN

Set the PID gain independently of the I and D time constants.

PIN	Parameter description	Range	Default
436	PID1 PROPORTIONAL GAIN	0.0 to 100.0	1.0

Proportional output = gain x (1 + DiffT/IntT) X error%. A higher gain usually provides a faster response.

Normally the DiffT is much smaller than IntT hence the equation then approximates to:

Prop output = gain x error%.

For example, a gain of 10 and a step-change in the error of 10% will result in a step-change at the output of 100%.

NOTE: Profile the gain using the PARAMETER PROFILE section within this menu.

16.2.9 437)PID1 INTEGRAL TC

Set the PID integrator time constant.

PIN	Parameter description	Range	Default
437	PID1 INTEGRAL TIME CONSTANT	0.01 to 100.00 seconds	5.00 seconds

NOTE: Processes that take a long time to react will usually require a longer integrator time constant.

When the PID output reaches the clamp limits, the PL/X holds the integrator at the prevailing condition.

The clamp levels are also separately applied to the internal integrator term result.

Refer to "16.2.16 444)PID1 NEG CLAMP" on page 258 and 467)PID2 NEG CLAMP.

16.2.10 438)PID1 DERIV TC

Set the PID derivative time constant.

PIN	Parameter description	Range	Default
438	PID1 DERIVATIVE TIME CONSTANT	0.000 to 10.000 seconds	0.000 seconds

Setting the derivative time constant to 0.000 removes the D term from the block effectively.

Loops that suffer from overshoot but require a rapid response usually benefit from a shorter derivative time constant.

R ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2

> PID 1 3 438)PID1 DERIV TC

LEVEL R ENTRY MENU 1 APPLICATION BLOCKS 2 PID 1 3

436)PID1 PROP GAIN

R ENTRY MENU

PID 1

APPLICATION BLOCKS

437)PID1 INTEGRAL TC

LEVEL

1

2

16.2.11 439)PID1 FILTER TC

Set the time constant of the PID output filter.

PIN	Parameter description	Range	Default
439	PID1 FILTER TIME CONSTANT	0.000 to 10.000 seconds	0.100 seconds

The derivative of a noisy error signal can lead to unwanted output excursions.

Typically, you set this filter time constant to DERIV TC/5 (one fifth, see above). A filter time constant of 0.000 will turn the filter off. The filter applies to the sum of the P, I and D terms.

R ENTRY MENU LEVEL	1
--------------------	---

APPLICATION BLOCKS 2

PID 1 3 439)PID1 FILTER TC

16.2.12 440)PID1 INT PRESET

Enable/disable the integrator being preset to the value of PIN 441.

PIN	Parameter description	Range			Defa	ult	
440	PID1 INTEGRAL PRESET	DISABLED ENABLED			DISA	BLED	
NOTE: indepe	The PID INT PRESET function operates ndently from the PID RESET function.		R	ENTRY I	MENU ATION	LEVEL BLOCKS	1
If the in the I te	ntegrator preset is permanently enabled erm is effectively removed from the block	, then <.		PID 4402	1 PID1	3 INT PRESE	T

16.2.13 441)PID1 PRESET VAL

Set the integrator preset value.

PIN	Parameter description	Range		Defaul	t	
441	PID1 PRESET VAL	±300.00%		0.00%		
440)P:	ID1 INT PRESET enables this integrator	preset _R	ENTRY	MENU	LEVEL	1

NOTE: The PID RESET function overrides the preset function.

E	NTRY	MENU	LEVE	L 1
A	PPLIC	ATION	BLOCKS	2
	PID	1		3
	441	>PID1	PRESET	VAL

16.2.14 442)PID1 RESET

Enable/disable PID1 RESET.

PIN	Parameter description	Range	Default
442	PID1 RESET	DISABLED ENABLED	DISABLED

R ENTRY MENU

PID 1

APPLICATION BLOCKS

442)PID1 RESET

LEVEL

3

1

2

- When DISABLED, this turns on the Output and releases the integrator.
- When ENABLED, the Output stage and the integrator set to 0.00%.

NOTE: The PID RESET operates independently from and has priority over the integrator preset function.

16.2.15 443)PID1 POS CLAMP

Set the positive clamp level for the PID output.

PIN	Parameter description	Range		Default		
443	PID1 POSITIVE CLAMP	0.00 to 105.009	%	100.00%		
NOTE: The act of clamping the output at this level holds the prevailing value of the integrator.		vel holds _R		1ENU L ATION BLO	EVEL	1 2
			PID	1	3	
			443)	PID1 POS	CLAMP	

16.2.16 444)PID1 NEG CLAMP

Set the negative clamp level for the PID output.

PIN	Parameter description	Range		Default		
444	PID1 NEGATIVE CLAMP	0.00 to -105.0	0%	-100.00%	6	
NOTE: the pre	The act of clamping the output at this le evailing value of the integrator.	vel holds _R	ENTRY N APPLICA PID 444)	1ENU I ATION BLI 1 PID1 NEC	LEVEL DCKS 3 3 CLAMP	1

16.2.17 445)PID1 OUTPUT TRIM

Set the scaling trim factor for the PID output.

PIN	Parameter description	Range	Default
445	PID1 OUTPUT TRIM	±3.0000	0.2000

Invert the output of the PID by selecting a negative trim factor.

R	E	VTRY	MENU	LEVE	L 1
	Ał	PPLI	CATION	BLOCKS	2
		PIC	1		3
		445	OPID1	OUTPUT	TRIM

16.2.18 446)PID1 PROFL MODE

Select a gain profile curve shape.

PIN	Parameter description	Range	Default
446	PID1 PROFL MODE	0 – 4 modes	0

Mode	Law of profile curve	R	E	NTRY MENU	LEVI	EL	1
0	Yaxis output = Yaxis MAX	1	A	PPLICATION	I BLOCK	s	2
1	Yaxis output = Linear change between MIN and MAX			PID 1 446)PID1	PROFL	3 Modi	E
2	Yaxis output = Square law change between MIN and MAX						
3	Yaxis output = Cubic law change between MIN and MAX						
4	Yaxis output = 4th power law change between MIN and MAX						

16.2.19 447)PID1 MIN PROP GN

Set the minimum value for the PID parameter profile output.

PIN	Parameter description	Range	Default
447	PID1 MINIMUM PROPORTIONAL GAIN	0.00 to 100.00%	20.00%

R	E	VTRY	MENU	L	EVEL	1
	A	PPLIC	CATION	BLO	СКЗ	2
		PID	1		3	
		447)PID1	MIN	PROP	GN

16.2.20 448)PID1 X-AXIS MIN

Set the minimum value for the PID parameter profile X-AXIS.

PIN	Parameter description	Range		Defa	ult	
448	PID1 X-AXIS MINIMUM	0.00 to 100.009	%	20.00)%	
		R	ENTRY APPLIC PID 4483	MENU ATION 1 PID1	LEVEL BLOCKS 3 X-AXIS MJ	1 2 [N

16.2.21 PID1 X-AXIS GET FROM

Set the PIN for the profile X-AXIS input signal source.

	Parameter description	Range		Default		
	PID1 X-AXIS GET FROM	000 to 720		400)Block Dis	connect	
NOTE: hence	This GETFROM input has a built-in rectifi will accept bipolar or unipolar inputs.	ier and F	۲ ا	ENTRY MENU	LEVE	_ 1
			1	PID 1	BLOCKS	2 3
				PID1 X-AX	IS GET	FROM

16.2.22 449)PID1 PROFILED GN

Monitor the PID profiled proportional gain.

PIN	Parameter description	Range
449	PID1 PROFILED PROPORTIONAL GAIN	0.0 to 100.0

R	E	ITRY	MENU	LEVEL	1
	AF	PPLIC	CATION	BLOCKS	2
		PIC	1	3	
		449	OPID1	PROFILED	GN

16.2.23 450)PID1 CLAMP FLAG

Monitor the PID output for having reached the clamp limits.

PIN	Parameter description	Range	
450	PID1 CLAMP FLAG	LOW HIGH (clamped	d)
Refer to "16.2.16 444)PID1 NEG CLAMP" on page 258 R and 467)PID2 NEG CLAMP.		ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2	
		PID 1 3 450)PID1 CLAMP FLAG	

16.2.24 451)PID1 ERROR MON

Monitor the PID1 error signal.

PIN	Parameter description	Range
451	PID1 ERROR MONITOR	LOW HIGH (clamped)
This pa NOTE: ±105.0	rameter is the result of summing inputs This error signal is clamped internally at 0%.	1 and 2. R ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2 PID 1 3 451)PID1 ERROR MON

16.3 APPLICATION BLOCKS/ PARAMETER PROFILER

Use this block to modulate one parameter according to the magnitude of another. A typical example is changing the gain of a block as the error increases.

The block symbol shows the profiler working in the positive quadrant by using a rectified version of the input signal to indicate the position on the profile X-axis. The related Y-axis amplitude then appears at the block output.

Both axes can impose maximum and minimum levels to the profile translation. The profile curve can adopt several different modes.

It is possible to use the block in up to 4 quadrants for specialist applications.

- R ENTRY MENU LEVEL 1
 - APPLICATION BLOCKS 2
 - PARAMETER PROFILER 3

475)PROFILE Y OP MON 476)PROFILER MODE 477)PROFLR Y AT Xmin 478)PROFLR Y AT Xmax 479)PROFILER Xmin 480)PROFILER Xmax 481)PROFLR X RECTIFY PRFL X-AXIS GET FROM

The GOTO of this block resides in the CONFIGURATION / BLOCK OP CONFIG menu - refer to Page 361.

Figure 59 PARAMETER PROFILER - block diagram

The graph shows the positive quadrant only. It is helpful to consider as coordinates each pair of minimum and maximum values.

The graph shows the positive quadrant only. It is helpful to consider as coordinates each pair of minimum and maximum values.

Figure 61 PARAMETER PROFILE - Profile for Y decreasing with X

the Xmin coordinate asymptotically. If Xmin \ge Xmax, then Y is constant and equal to **PROFLR Y AT Xmax**.

With the PROFILER MODE set to 0, then Y is constant and equal to **PROFLR Y AT Xmax**.

Figure 62 PARAMETER PROFILE - Examples of general profiles

16.3.1 475)PROFILE Y OP MON

Monitor the final output of the parameter profiler block.

PIN	Parameter description	Range
475	PROFILE Y OUTPUT MONITOR	±300.00%

- LEVEL R ENTRY MENU 1
 - APPLICATION BLOCKS 2
 - PARAMETER PROFILER 3

475)PROFILE Y OP MON

16.3.2 476)PROFILER MODE

Set the mode for the profile curve between minimum and maximum.

PIN	Parameter description	Range	Default
476	PROFILER MODE	1 of 5 modes	0

Mode	Law of profile curve	R	E	ENTRY M	ENU	LEVEL	1
0	Yaxis output = Y at Xmax		F	APPLICA	TION E	LOCKS	2
1	Yaxis output = Linear change between minimum and maximum coordinates		F	PARAMETI	ER PRO PROFIL	FILER ER MODE	3
2	Yaxis output = Square law change between minimum and maximum coordinates						
3	Yaxis output = Cubic law change between minimum and maximum coordinates						
4	Yaxis output = 4th power law change between minimum and maximum coordinates						

16.3.3 477)PROFLR Y AT Xmin

Set the corresponding value for the Y-axis at Xmin.

PIN	Parameter description	Range	Range			Default		
477	PROFILER Y AT Xmin	±300.00%			0.00%			
			R	ENTRY APPLIC PARAME	MENU ATION B TER PRO >PROFLR	LEVEL LOCKS FILER Y AT Xm	1 2 3 nin	

16.3.4 478)PROFLR Y AT Xmax

Set the corresponding value for the Y-axis at Xmax.

PIN	Parameter description	Range	Default
478	PROFILER Y AT Xmax	±300.00%	0.00%

- R ENTRY MENU LEVEL 1
 - APPLICATION BLOCKS 2
 - PARAMETER PROFILER 3

478)PROFLR Y AT Xmax

16.3.5 479)PROFILER Xmin

Set the minimum value for the X-axis input.

PIN	Parameter description	Range			Default	t	
479	PROFILER Xmin	±300.00%			0.00%		
NOTE: If the value for Xmin is greater or equal to Xmax, then Y is constant and equal to PROFLR Y AT Xmax.		to Xmax, nax.	R	ENTRY I	MENU ATION BL	LEVEL LOCKS	1 2
				PROFILE	FILER ER Xmin	ک	

16.3.6 480)PROFILER Xmax

Set the maximum value for the X-axis input.

DINI	Demonstration de contrations	D			Defeul	•	
PIN	Parameter description	kange			Detaul	τ	
480	PROFILER Xmax	±300.00%		0.00%			
NOTE:	If the value for Xmin is greater or equal	to Xmax,	R	ENTRY N	1ENU	LEVEL	1
ulen i	is constant and equal to FROFER TATAI	Ιαλ.		APPLICA	ATION BL	LOCKS	2
				PARAMET	FER PROF	FILER	3
			480>	PROFILE	ER Xmax		

16.3.7 481)PROFLR X RECTIFY

Enable/disable the X-axis input.

PIN	Parameter description	Range	Default
481	PROFILER X RECTIFY	DISABLED ENABLED	ENABLED

Enable to rectify the X-axis input.

R ENTRY MENU LEVEL 1

APPLICATION BLOCKS 2

PARAMETER PROFILER 3

481)PROFLR X RECTIFY

16.3.8 PRFL X-AXIS GET FROM

Set the PIN for the profile X-axis input signal source.

Parameter description	Range	Default		
PROFILER X-AXIS GET FROM	000 to 720	400)Block Disconnect		

- LEVEL R ENTRY MENU 1
 - APPLICATION BLOCKS 2
 - PARAMETER PROFILER 3

PRFL X-AXIS GET FROM

16.4 APPLICATION BLOCKS / REEL DIAMETER CALC

This block performs reel diameter calculation and provides a diameter output for control of web winding tension systems.

For a constant web speed, the reel shaft slows down as the reel diameter increases. Dividing the web speed by the shaft speed gives the reel diameter.

The diameter value can be independently preset to any value allowing seamless take-up for winding or unwinding applications. There is a provision made to suspend diameter calculation if the speed falls below a user preset threshold. The diameter can be programmed to be retained indefinitely during power loss if desired. It includes a filter with an adjustable time constant to smooth the calculation output and a web break alarm flag output, with an adjustable threshold, to compare the input and output of the smoothing filter.

With this measure of the reel diameter, it is possible to control the torque of the reel shaft to give constant tension in the web. This tension control method is an open-loop technique and relies on the system properties remaining constant over time.

Not all of the torque at the shaft goes into web tension. Some go towards overcoming losses in the mechanical system. These can be caused by:-

- Static or starting friction.
- Dynamic friction due to windage etc.
- The fixed inertia of the motor and transmission.
- The varying inertia of the increasing reel.

A torgue compensation block ("16.6 APPLICATION BLOCKS / TORQUE COMPENSATOR" on page 279) is available to provide a compensatory signal which adds just sufficient torque to overcome the losses. For good results, it is essential to keep the torque required for loss compensation as low as possible compared with that required to make tension. For example, if the torque required to overcome the losses is 10% of the torque required to provide the desired web tension, then a drift of 25% in the losses results in a tension error of 2.5%. However, if the torgue required to overcome losses is the same (100%) as the torque required to provide the desired web tension, then a drift of 25% in the losses results in a tension error of 25%. Also, it becomes harder to estimate the absolute magnitude of the losses as they increase.

The GOTO of this block resides in the CONFIGURATION/BLOCK OP CONFIG menu - refer to Page 361.

Some systems require the tension of the web to taper according to the reel diameter. This technique will prevent reel collapse or damage to delicate materials.

A taper control block is available for this function: "16.5 APPLICATION BLOCKS / TAPER TENSION CALC" on page 275.

If the diameter calculation requires holding, then connect to hidden parameter 697>UNFILTERED DIA. that contains the unheld diameter calculation.

CAUTION! EQUIPMENT DAMAGE HAZARD

If, due to the mechanical arrangement of the machine it is impossible to achieve sufficiently low losses, then use a closedloop system of tension control which could use dancing arm methods or a tension transducer loadcell feedback system

NOTE: Usually, this block is used in conjunction with the **TAPER TENSION CALC** and **TORQUE COMPENSATOR** blocks. In this case, the diameter result is automatically connected to these blocks via internal software connections. Hence the GOTO of this block must be connected to a staging post for example, in order to activate the block. Refer to "16.7 Centre winding block arrangement" on page 292.

Figure 63 REEL DIAMETER CALC - block diagram

16.4.1 483) **DIAMETER OP MON**

Monitor the output result of the diameter calculator.

PIN	Parameter description	Range
483	DIAMETER OUTPUT MONITOR	0.00 to +100.00%

- R ENTRY MENU LEVEL 1
 - APPLICATION BLOCKS 2
 - REEL DIAMETER CALC 3

483>DIAMETER OP MON

16.4.2 484) DIA WEB SPEED IP

Set the input value for the web speed prior to rectifying.

PIN	Parameter description	Range	Default
484	DIAMETER WEB SPEED INPUT	±105.00%	0.00%

R ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2 REEL DIAMETER CALC 3 484)DIA WEB SPEED IP

16.4.3 485)DIA REEL SPD IP

Set the input value for the reel speed prior to rectifying.

PIN	Parameter description	Range			Defaul	t	
485	DIAMETER REEL SPEED INPUT	±105.00%			0.00%		
			R	ENTRY	MENU	LEVEL	1
		APPLI		APPLIC	ATION B	LOCKS	2
				REEL D	IAMETER	CALC	3
				485	DIA RE	EL SPD	IP

16.4.4 486) **DIAMETER MIN**

Set a minimum clamp level for the diameter calculator.

PIN	Parameter description	Range	Default
486	DIAMETER MINIMUM	0.00 to +100.00%	10.00%

Also, use this value as a scaling factor for the diameter calculation.

Result (%) = (Web/Reel) x (Dia min).

R	ENTRY	MENU	LEVEL	1
---	-------	------	-------	---

- APPLICATION BLOCKS 2
- REEL DIAMETER CALC 3

486) DIAMETER MIN

16.4.5 487) DIA MIN SPEED

Set a web speed % below which the calculation is held.

PIN	Parameter description	Range	Default
487	DIAMETER MINIMUM SPEED	±105.00%	0.00%

R ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2 REEL DIAMETER CALC 3

487)DIA MIN SPEED

16.4.6 488) **DIAMETER HOLD**

Enable/disable hold of the last calculated diameter.

PIN	Parameter description	Range		Defaul	t	
488	DIAMETER HOLD	DISABLED ENABLED		DISABLED		
			R ENTRY	MENU	LEVEL	1

- APPLICATION BLOCKS 2
- REEL DIAMETER CALC 3
 - 488)DIAMETER HOLD

16.4.7 489)DIA FILTER TC

Set the filter time constant for the diameter calculation.

PIN	Parameter description	Range	Default
489	DIAMETER FILTER TIME CONSTANT	0.00 to 200.00 seconds	5.00 seconds

This value applies a filter to the output to remove small transients in the raw calculation. The difference between the input and output of the filter also provides a comparison measurement for the web break detector. Refer to "16.4.10 492)DIA WEB BRK THR." on page 274.

R ENTRY MENU LEVEL 1

APPLICATION BLOCKS 2

REEL DIAMETER CALC 3

489)DIA FILTER TC

16.4.8 490) DIAMETER PRESET

Enable/disable the preset value used by the calculator.

PIN	Parameter description	Range			Default	:	
490	DIAMETER PRESET	DISABLED ENABLED			DISABLED		
The ca ENABL	lculator is set to this preset value when s ED.	setting to	R	ENTRY I	1ENU	LEVEL	1
			1	APPLIC	ATION BL	LOCKS	2
				REEL D	IAMETER	CALC	3
				490>	DIAMETE	R PRESET	Г

16.4.9 491) DIA PRESET VALUE

Set a preset value for the calculator, set by DIAMETER PRESET.

PIN	Parameter description	Range		Defaul	t	
491	DIAMETER PRESET VALUE	0.00 to +100.00	10.00%			
		R	ENTRY	MENU	LEVEL	1
			APPLIC	ATION B	LOCKS	2
			REEL D	IAMETER	CALC	3
			491	DIA PRE	ESET VALI	JE

16.4.10 492) DIA WEB BRK THR.

Set the threshold at which the web break flag will be activated.

PIN	Parameter description	Range	Default
492	DIAMETER WEB BREAK THRESHOLD	0.00 to +100.00%	7.50%

A break in the web will cause a sudden change in the diameter calculation due to the breakdown of the speed relationship.

Hence, if the raw calculation value changes at a rate that causes it to differ from the filtered calculation result by more than this threshold value, then the web break flag on hidden PIN 690 will be set high. Refer to "16.4.7 489)DIA FILTER TC" on page 273.

NOTE: This flag will also go high if the calculator output is preset to a value that differs from the calculated value (derived from the prevailing web and reel speeds) by more than the threshold.

R ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2

> REEL DIAMETER CALC 3

492)DIA WEB BRK THR.

16.4.11 493)DIA MEM BOOT-UP

Enable/disable to select a value for the calculator on power-up.

PIN	Parameter description	Range		Default			
493	DIAMETER MEMORY BOOT-UP	DISABLED ENABLED		DISABLED			
DISABLED : Set the value of the calculator on control supply power-up to 486)DIAMETER MIN .			R	ENTRY I	MENU ATION BI	LEVEL	1
ENABLED : Retain the current value of the calculator during control supply power-off. Set the value on control supply power-up to the retained setting.			REEL D	IAMETER	CALC 1 BOOT-UR	3	

16.5 APPLICATION BLOCKS / TAPER TENSION CALC

This block allows the introduction of positive or negative taper to a tension reference and the capability for externally trimming the final output.

The taper profile can be selected to be hyperbolic or linear to suit most types of winding requirements.

NOTE: This block has internal connections from the REEL DIAMETER CALC block that require activation to allow the taper calculation to proceed.

 R
 ENTRY MENU
 LEVEL
 1

 APPLICATION
 BLOCKS
 2

 TAPER
 TENSION
 CALC
 3

 494)TOTAL
 TENSION
 MN

 495)TENSION
 REF

 496)TAPER
 STRENGTH

 497)HYPERBOLIC
 TAPER

 498)TENSION
 TRIM

 499)TAPERED
 TENS.MON

The GOTO of this block resides in the CONFIGURATION/BLOCK OP CONFIG menu - refer to Page 361.

Figure 64 TAPER TENSION CALC - block diagram

16.5.1 Linear taper equation

Tapered tension% = (Tension ref% / 100%) X (100% - (Dia% - Min dia%) X Taper strength% / 100%).

16.5.2 Hyperbolic taper equation

Tapered tension% = (Tension ref% / 100%) X (100% - (Dia% - Min dia%) X Taper strength% / Dia%).

Taper graphs showing tension versus diameter 16.5.2.1

Figure 65 Taper graphs showing tension versus diameter

16.5.3 494)TOTAL TENSION MN

Monitor the total output of the taper tension calculator.

PIN	Parameter description	Range
494	TOTAL TENSION MONITOR	±100.00%

- R ENTRY MENU LEVEL 1
 - APPLICATION BLOCKS 2
 - TAPER TENSION CALC 3

494) TOTAL TENSION MN

16.5.4 495)TENSION REF

Set the tension reference for the taper tension calculator.

PIN	Parameter description	Range
495	TENSION REFERENCE	0.00 to +100.00%

- R ENTRY MENU LEVEL 1
 - APPLICATION BLOCKS 2
 - TAPER TENSION CALC 3

495)TENSION REF

16.5.5 496) TAPER STRENGTH

Set the amount of taper for the taper tension calculator.

PIN	Parameter description	Range				
496	TAPER STRENGTH	±100.00%				
The tap 497)HY	per may be linear or hyperbolic. Refer to PERBOLIC TAPER" on page 278.	"16.5.6	R	ENTRY MENU APPLICATION E TAPER TENSION 496>TAPER	LEVEL 8LOCKS 1 CALC STRENGTH	1 2 3

16.5.6 497)HYPERBOLIC TAPER

Enable/disable the taper profile.

PIN	Parameter description	Range			Default	:	
497	HYPERBOLIC TAPER	DISABLED ENABLED			DISABL	ED	
When ENABLED, the taper profile is hyperbolic.			R	ENTRY	MENU	LEVEL	1
When DISABLED, the taper profile is linear.				APPLIC	ATION B	_OCKS	2
Refer to "16.5.5 496)TAPER STRENGTH" on page 277.				REEL D	IAMETER	CALC	3
			497	HYPERBO	LIC TAP	ER	

16.5.7 498)TENSION TRIM IP

Set a trim input level that is added to the tapered tension.

PIN	Parameter description	Range	Default
498	TENSION TRIM INPUT	±100.00%	0.00%

R ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2 REEL DIAMETER CALC 3 498) TENSION TRIM IP

16.5.8 499) TAPERED TENS.MON

Monitor the output of the taper tension calculator before the addition of 498)TENSION TRIM INPUT.

PIN	Parameter description	Range					
499	TAPERED TENSION MONITOR	±100.00%					
			R	ENTRY MENU	J	LEVEL	1
				APPLICATIO)n Bl	_OCKS	2
				REEL DIAME	TER	CALC	3
				499)TAF	ERED) TENS	Mon

16.6 APPLICATION BLOCKS / TORQUE COMPENSATOR

Use this block to add loss compensation to the tension demand signal generated by the TAPER TENSION CALC block. The result is steered to the positive or negative current limits to provide a torque clamp giving the correct tension. The losses in the winding system are friction and inertia.

When winding, the drive system relies on arranging the speed loop to saturate, thus the speed demand remains unsatisfied under all conditions, and so the speed loop is always asking for more current than the clamps will allow. Hence, the current is operating at the limit determined by the torque compensator.

You can accomplish Speed loop saturation by using the SLACK take-up function. Refer to "11.4 CHANGE PARAMETERS / JOG CRAWL SLACK" on page 139. The hidden parameter 714) IN SLACK FLAG stays high during the slack take-up mode, including during the ramp-up/down periods. Use this FLAG to operate 518) TENSION ENGRUE.

Friction: This block provides compensation for stiction, static friction and dynamic friction. Stiction compensation gets the system moving and is applied only if the web speed exceeds its programmed threshold (e.g. 5%) and the reel speed remains below 2%. The block applies static friction compensation at a constant level and dynamic friction compensation that linearly increases with speed.

Inertia: When accelerating or decelerating, torque is required to overcome the mechanical inertia of the total load. Without compensation, this torque is no longer available to provide tension. Hence to control the tension more accurately, the block provides compensation for both fixed and variable inertia. The fixed inertia compensation accelerates all fixedmass components of the system (e.g. motor, gearbox, reel former, etc.). The variable inertia compensation accelerates the process material, the mass of which is changing as the reel diameter changes. There is also a provision for compensating for different material widths.

Find the compensation factors by pure calculation, or empirically. The descriptions here outline empirical methods using only the reel drive and a full and an empty reel.

- 1 R ENTRY MENU LEVEL
 - APPLICATION BLOCKS 2
 - TORQUE COMPENSATOR 3

500) TORQUE DEMAND MN 501>TORQUE TRIM IP 502)STICTION COMP 503)STIC.WEB SPD THR 504)STATIC FRICTION 505) DYNAMIC FRICTION 506)FRICTION SIGN 507)FIXED INERTIA 508)VARIABLE INERTIA 509)MATERIAL WIDTH 510)ACCEL LINE SPEED 511)ACCEL SCALER 512)ACCEL INPUT/MON 513)ACCEL FILTER TC 514) TENSION DEM IP 515) TENSION SCALER 516)TORQUE MEM SEL 517) TORQUE MEM INPUT 518) TENSION ENABLE 519) OVER/UNDERWIND 520) INERTIA COM MON

The GOTO of this block resides in the **CONFIGURATION ZBLOCK** OP CONFIG menu - refer to Page 361.

Figure 67 TORQUE COMPENSATOR INERTIA COMPENSATOR - block diagram

Figure 68 TORQUE COMPENSATOR FRICTION COMPENSATOR - block diagram

16.6.1 500)TORQUE DEMAND MN

Monitor the total torque demand reference.

PIN	Parameter description	Range					
500	TORQUE DEMAND MONITOR	±300.00%					
The torque demand reference is the sum of all the compensation components and the scaled tension		R	ENTRY ME	ENU TION BL	LEVEL LOCKS	1	
					COMPEN	SATOR	3
			200)1	URQUE	DEMAND	MN	

16.6.2 501)TORQUE TRIM IP

Add a torque trim input to the compensation.

PIN	Parameter description	Range	Default
501	TORQUE TRIM INPUT	±150.00%	0.00%

R ENTRY MENU LEVEL 1

APPLICATION BLOCKS 2

TORQUE COMPENSATOR 3

501)TORQUE TRIM IP

16.6.3 502)STICTION COMP

Set the level of compensation required to overcome stiction.

PIN	Parameter description	Range		Default	t	
502	STICTION COMPENSATION	±300.00%		0.00%		
Refer t	o 16.6.4 below.	R	ENTRY	MENU	LEVEL	1

TORQUE COMPENSATOR 502>STICTION COMP

APPLICATION BLOCKS

2

3

16.6.4 503)STIC.WEB SPD THR

Set the web speed below which stiction compensation occurs.

PIN	Parameter description	Range		Default		
503	STICTION WEB SPEED THRESHOLD	0.00 to 10.00%		5.00%		
Some	systems require extra torque to overcom	e R	ENTRY	MENU	LEVEL	1
starting friction. Setting this level will ensure the reel			APPLIC	ATION BL	OCKS	2
We suggest a value of $E_{0.00\%}$ as a starting point				COMPENS	SATOR	3
we sug	ggest a value of 5.00% as a starting point	•	503	STIC.WE	B SPD	THR
The th directi	reshold is not signed and can apply to bo ons of rotation.					
The system STICT	stem adds the compensation set by 502 . ION COMP when:))				
	The web speed reference is greater th threshold	ian the				
AI	ND					
	The reel speed feedback is less than 2	2.00%.				
Hence, stiction	, the compensation is only active during n phase and will not permanently apply a need reference	the at zero				

web speed reference.

16.6.5 504)STATIC FRICTION

Set the compensation required to overcome static friction.

PIN	Parameter description	Range			Defaul	t	
504	STATIC FRICTION	±300.00%			0.00%		
A compensation applied at a constant level throughout			R	ENTRY	MENU	LEVEL	1
the spe	the speed range.			APPLIC	ATION B	LOCKS	2
Record	l the value for ARM CUR % MON (in the Dia	gnostics		TORQUE	COMPEN	SATOR	3

Record the value for **ARM CUR % MON** (in the Diagnostics menu) when running with an empty reel at 10% speed, and enter the value into this parameter.

16.6.6 505)DYNAMIC FRICTION

Set the compensation required to overcome dynamic friction.

PIN	Parameter description	Range	Default
505	DYNAMIC FRICTION	±300.00%	0.00%

A compensation applied at a level proportional to speed. Record the value for ARM CUR **%** MON (in the Diagnostics menu) when running with an empty reel at 100% speed, and here enter the difference between this value and the value for **504)STATIC FRICTION**. The block then automatically adjusts the compensation, scaling it according to web speed.

R	ENTRY M	IENU	LEVEL	1
	APPLICA	TION BL	OCKS	2
	TORQUE	COMPENS	ator	3
	505>	DYNAMIC	FRICTIO	Ν

504)STATIC FRICTION

Refer to the diagram in **16.6.5** above.

16.6.7 506)FRICTION SIGN

Set the total friction compensation polarity for forward or reverse.

PIN	Parameter description	Range	Default
506	FRICTION SIGN	INVERT NON-INVERT	NON-INVERT

R ENTRY MENU LEVEL 1

APPLICATION BLOCKS 2

TORQUE COMPENSATOR

3

506)FRICTION SIGN

16.6.8 507)FIXED INERTIA

Set the compensation required to overcome fixed mass inertia.

PIN	Parameter description	Range	Default
507	FIXED INERTIA	±300.00%	0.00%

This compensation depends upon the reel diameter, so the REEL DIAMETER CALC application block must be active to acquire the diameter value.

The gain of this input is proportional to 1/DIA. It is unity for minimum diameter and 1/(build-up ratio) at maximum diameter

For a suitable value to enter here, measure the armature current with a separate empty reel running in speed control mode.

First, reprogram the reel drive speed ramp to be the same ramp time as the web speed.

Then set the speed reference to a constant 95% and note ARM CUR % MON in the diagnostics menu. Increase the speed reference to 100%. While the reel is ramping up to the new speed, measure the increased ARM **CUR % MON** in the diagnostics menu. The change is the current% required to accelerate the fixed mass from 95% to 100% speed at the normal maximum acceleration rate. Enter this change in current% in the FIXED INERTIA parameter.

R ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2 TORQUE COMPENSATOR 3 507)FIXED INERTIA

For complete accuracy, determine the fixed mass inertia value for each reel core when they have different reel core sizes or masses.

The fixed inertia compensation has the most influence on tension accuracy for empty reels. These have higher speeds and a higher ratio of fixed mass to variable mass. Hence for good results, it is important to make accurate measurements to determine the compensation.

16.6.9 508)VARIABLE INERTIA

Set the compensation required to overcome variable mass inertia.

	PIN	Parameter description	Range		Default		
	508	VARIABLE INERTIA	±300.00%		0.00%		
This compensation depends upon the reel diameter, so the REEL DIAMETER CALC application block must be active to acquire the diameter value.			R ENTRY	MENU ATION BL	LEVEL .OCKS	1 2	
The gain curve of this input is proportional to DIA ³ . It is zero at the minimum diameter and unity for the maximum diameter.		DIA ³ . or the	TORQUE	COMPENS	ATOR E INERTI	3 (A	
	To arrive at a suitable value to enter here, you must measure the armature current with a separate full reel						

running in speed control mode. This experiment simulates the condition of unity gain to this input and allows you to measure the torque required to accelerate the mass. This condition occurs at the maximum diameter and hence minimum reel

speed. 1. Calculate the build-up ratio. For example, if your

- core diameter is 0.1 metres, and the full reel diameter is 0.5 metres, then the build-up ratio is 5.
- 2. Reprogram the reel drive speed ramp to a new longer ramp time as follows:

New ramp time = the web speed ramp time X the build-up ratio.

For example: for a web speed ramp time of 10 seconds and a build-up ratio of 5, adjust the reel speed ramp time to 50 seconds (10×5) for the duration of the experiment. Remember to return the reel speed ramp time to the original setting when the reading is complete.

- 3. Set the speed of the reel drive to 100% / build-up ratio (in this example, this results in a 20% speed).
- 4. Increase the speed reference by 5% and, while accelerating the reel of material, note the change in ARM CUR % MON in the diagnostics menu. From this change value, subtract the value of 507) FIXED INERTIA. The result represents the current% required to accelerate the mass of the material. Enter this value into the VARIABLE **INERTIA** parameter.

16.6.10 509)MATERIAL WIDTH

Set a ratio % to accommodate material width or mass changes.

PIN	Parameter description	Range	Default			
509	MATERIAL WIDTH	200.00%		100.00%		
The m of ine mass.	naterial used during the empirical measur rtia compensation currents is the 100% w For example:	ement _R ⁄idth/	ENTRY I	MENU L ATION BLO	EVEL ICKS	1 2
 For material twice as wide as the measurement material, set this value to 200.00% 				COMPENSE	NTOR	3
• For material of a specific gravity which is 80% of the measurement material, set the value to 80.00%.						
 For material of a specific gravity which is 80% of the measurement material and twice as wide, set the value to 160.00%. 						
NOTE: The formula used by the block assumes an air core. The value for fixed mass inertia compensation accommodates the mass of the reel core. If the reel mass changes in addition to the material, then both FIXED INERTIA and MATERIAL WIDTH will require adjusting						

16.6.11 510)ACCEL LINE SPEED

Enter the web speed reference to calculate the acceleration.

PI	N	Parameter description	Range			Default		
51	0	ACCELERATION LINE SPEED	±105.00%			0.00%		
The the arri	The acceleration of the system is required to calculate R the total inertia compensation. There are two ways of arriving at a value for acceleration:					MENU ATION E	LEVEL	1
1. Input the acceleration value directly from an external source to PIN 512.				COMPEN	ISATOR LINE SPE	3 ED		
 Let the block calculate the value by differentiating the line or web speed for input to PIN 510. 								
Wh inp fror	When using method 2, a line or web speed reference is input. NOTE: The line speed reference will usually come from an external source via an analog input terminal.							
The	inp	out speed is scaled by 511)ACCEL SCAL	ER.					
NO inte bec the valu	NOTE: Setting 511 ACCEL SCALER to 0.00 opens an nternal switch to allow 512 ACCEL INPUT/MON to become an input. Otherwise, it remains a monitor of the calculated acceleration. Arrange for the resulting rolue op 512 ACCEL INPUT/MON to be 100 00% for							

maximum acceleration by either method.

16.6.12 511)ACCEL SCALER

Set a scaling factor to normalise the acceleration calculation.

PIN	Parameter description	Range	Default
511	ACCELERATION SCALER	±100.00	10.00

Typically set this value to equal the 100% ramp time. For example, if the total ramp time equals 10 seconds, set this parameter to 10.00.

Refer to "16.6.11 510)ACCEL LINE SPEED" on page 287.

NOTE: Setting **511ACCEL SCALER** to 0.00 opens an internal switch to allow **512ACCEL INPUT/MON** to become an input. Otherwise, it remains a monitor of the calculated acceleration.

R ENTRY MENU LEVEL 1

APPLICATION BLOCKS 2

TORQUE COMPENSATOR 3

511)ACCEL SCALER

16.6.13 512)ACCEL INPUT/MON

Monitor acceleration, or input an external acceleration signal.

PIN	Parameter description	Range			Defaul	t	
512	ACCELERATION INPUT/MONITOR	0 to 105.00%	6		0.00%		
Refer to "16.6.11 510)ACCEL LINE SPEED" on page _R 287.		age	R	ENTRY	MENU		1
			TOROUR	COMPEN	LUCKS	2	
			512) ACCEL	INPUT/MON	4	

16.6.14 513)ACCEL FILTER TC

Set a filter time constant for the line acceleration signal.

PIN	Parameter description	Range		Default	t	
513	ACCELERATION FILTER TIME CONSTANT	0.00 to 200.00 seconds		0.10 seconds		
Refer to "16.6.11 510)ACCEL LINE SPEED" on page R 287.			ENTRY I	1ENU ATION BI	LEVEL LOCKS	1
			TORQUE	COMPEN	SATOR	3
			513)	ACCEL P	FILTER	тс

16.6.15 514)TENSION DEM IP

Set the tension demand input.

PIN	Parameter description	Range	Default
514	TENSION DEMAND INPUT	±100.00%	0.00%

R ENTRY MENU LEVEL 1

APPLICATION BLOCKS 2

TORQUE COMPENSATOR 3

514) TENSION DEM IP

16.6.16 515)TENSION SCALER

Scale the tension from the taper tension block.

PIN	Parameter description	Range	Default
515	TENSION SCALER	±3.0000	1.0000

The factor you enter here divides the result of the product of the tension input and the diameter.

R	ENTRY MENU LEVEL	1
	APPLICATION BLOCKS	2
	TORQUE COMPENSATOR	3
	515)TENSION SCALER	

16.6.17 516)TORQUE MEM SEL

Enable/disable an external torque source.

	PIN	Parameter description	Range			Default	:	
	516	TORQUE MEMORY SELECT	DISABLED ENABLED			DISABL	ED	
	ENABLE to select the value set in 517)TORQUE MEM INPUT.			R	ENTRY I	MENU	LEVEL	1
This parameter is helpful if you need to hold the torque			e torque not		TORQUE	COMPEN:	SATOR	2
	available at the levels required to provide a calculated output for example, during a reel changeover				516	TORQUE	MEM SEL	

The stored value may be obtained using a sample and hold. Refer to "16.9 APPLICATION BLOCKS / MULTI-FUNCTION 1 TO 8" on page 298.

sequence.

16.6.18 517)TORQUE MEM INPUT

Set the input value for parameter 516>TORQUE MEM SEL.

PIN	Parameter description	Range			Defau	lt	
517	TORQUE MEMORY INPUT	±300.00%			0.00%		
517 TORQUE MEMORY INPUT ±300.00% This parameter is helpful if you need to hold the torque at a stored value because the input speeds are not available at the levels required to provide a calculated output, for example, during a reel changeover sequence, for example, during a line stopping sequence.			R	ENTRY APPLIC TORQUE	MENU CATION E COMPE	LEVEL BLOCKS NSATOR E MEM INF	1 2 3 2 70T
The stored value may be obtained using a sample and hold. Refer to "16.9. APPLICATION BLOCKS / MULTI-							

16.6.19 518)TENSION ENABLE

FUNCTION 1 TO 8" on page 298.

Select the torque reference, or the prevailing current limit.

	PIN	PIN Parameter description Range				Default			
	518 TENSION ENABLE DISABLED ENABLED					C			
E S	By selecting the prevailing current limit (DISABLED), the system can operate as a speed controller. When the torque demand is ENABLED, the torque compensator provides the new current limit.			R	ENTRY	MENU	LEVEL	1	
t					APPLIC	CATION BLOCKS			
p					TORQUE	COMPENS	ATOR	3	
When winding, the drive system relies on arranging the speed loop to saturate so that the current is operating at the limit determined by the torque compensator. You can use the SLACK take-up function to accomplish speed loop saturation. Refer to "11.4 CHANGE PARAMETERS / IOG CRAWL SLACK" on page 139.				518	TENSION	ENABLE			
	he hidden parameter 714>IN SLACK FLAG stays high luring the slack take-up mode, including the ramp-up/ lown periods. Use this FLAG to operate 518>TENSION								

16.6.20 519)OVER/UNDERWIND

Select the direction of layer addition on the reel.

PIN	Parameter description	Range	Default
519	OVER/UNDERWIND	DISABLED ENABLED	ENABLED

ENABLED = Overwind. DISABLED = Underwind.

The term overwinding refers to the chosen direction of layer addition on the reel. It assumes that the web winds onto the reel in the direction that requires a positive current clamp. If the web winds on in the underwind direction, then the reel must change the direction of rotation and the negative current clamp is operative.

R ENTRY MENU LEVEL 1

APPLICATION BLOCKS 2

TORQUE COMPENSATOR 3

519) OVER/UNDERWIND

16.6.21 520)INERTIA COMP MON

Monitor the final result of inertia compensation.

PIN	Parameter description	Range					
520	INERTIA COMPENSATION MONITOR	±300.00%					
			R	ENTRY M	ENU	LEVEL	1

APPLICATION BLOCKS 2

TORQUE COMPENSATOR 3

520) INERTIA COMP MON

16.7 Centre winding block arrangement

To activate this block, connect the GOTO. For example, to a staging post.

16.8 APPLICATIONS BLOCK / PRESET SPEED

This block provides a versatile preset value selection machine. Its primary use is for preset speeds.

By defining output values for each of eight possible input combinations, it is possible to create various preset modes types, for example, input priority, input summing, BCD thumbwheel code.

- This block contains eight consecutive PINs with a range of ±300.00% (527 to 534).
- SEL3,2,1 refer to the value of parameters 526, 525, 524 (LOW=0, HIGH=1).

Refer to the examples on the following page.

2	ENTRY MENU	LEVEL	1
	APPLICATION	BLOCKS	2

.

REDEI	SFEED			ు
523)	PRESET	OP I	MON	
524)	PRESET	SEL	1 (LS	8)
525)	PRESET	SEL	ECT2	2
526)	PRESET	SEL	3(M9	3B)
527)	PR.VAL	UE F	OR Ø	900
528)	PR.VAL	UE F	OR Ø	901
529)	PR.VAL	UE F	OR Ø	010
530)	PR.VAL	UE F	OR Ø)11
531)	PR.VAL	UE F	OR 1	00
532)	PR.VAL	UE F	OR 1	01
533)	PR.VAL	UE F	OR 1	10
534)	PR.VAL	UE F	OR 1	11

The GOTO of this block resides in the CONFIGURATION/BLOCK OP CONFIG menu - refer to Page 361.

Figure 70 PRESET SPEED - block diagram

Inputs SEL3,2,1	PIN number to set value	Actual value
000	PIN 527	0.00%
001	PIN 528	W%
010	PIN 529	X%
011	PIN 530	X%
100	PIN 531	Y%
101	PIN 532	Y%
110	PIN 533	Y%
111	PIN 534	Y%

Ascending priority

Assuming that there are three output values (1 for W, 2 for X, 3 for Y) required and that logic select input 3 has the highest priority, followed by 2 and 1 in that order.

Enter the values for each PIN as shown in the table opposite to obtain the desired result.

Inputs SEL3,2,1	PIN number to set value	Actual value
000	PIN 527	0.00%
001	PIN 528	10.00%
010	PIN 529	20.00%
011	PIN 530	30.00%
100	PIN 531	40.00%
101	PIN 532	50.00%
110	PIN 533	60.00%
111	PIN 534	70.00%

PIN number

to set value

PIN 527

PIN 528

PIN 529

Binary coded decimal

This combination will give eight values up to 70.00% for the 8 BCD codes.

4 digital inputs fo	or 4 preset speeds
---------------------	--------------------

Make the GOTO connection to the Value for low PIN on a digital input, e.g. DIP1 on T14. Then connect the GOTO of DIP1 to the desired preset speed target PIN.

The DIP1 digital input will be the 25% input.

The preset speed select1 input will be the 50% input.

The preset speed select2 input will be the 75% input.

The preset speed select3 input will be the 100% input.

The intermediate combinations are shown here bolded with intermediate values for a smoother transition but set values as desired.

011	PIN 530	62.50%
100	PIN 531	100.00%
101	PIN 532	75.00%
110	PIN 533	87.50%
111	PIN 534	0.00%

Actual value

25.00%

50.00%

75.00%

Inputs

000

001

010

SEL3.2.1

16.8.1 523)PRESET SPEED MON

Monitor the preset speed block output.

523 PRESET SPEED MON	NITOR	±300.00%

 R
 ENTRY MENU
 LEVEL
 1

 APPLICATION
 BLOCKS
 2

 PRESET
 SPEED
 3

 523>PRESET
 SPEED
 MON

16.8.2 524)PRESET SEL1(LSB)

Set the logic state of the preset speed block digital input.

PIN	Parameter description	Range		Defaul	t	
524	PRESET SELECT1 (LEAST SIGNIFICANT BIT)	LOW HIGH		LOW		
		R	ENTRY	MENU	LEVEL	1
			APPLIC	ATION B	LOCKS	2
			PRESET	SPEED		3
			524	PRESET	SEL1(LSE	3)

16.8.3 525)PRESET SELECT 2

Set the logic state of the preset speed block digital input.

PIN	Parameter description	Range		Default	:	
525	PRESET SELECT 2	LOW HIGH		LOW		
		R	ENTRY I	MENU	LEVEL	1
			APPLIC	ATION B	LOCKS	2
			PRESET	SPEED		3
			525:	PRESET	SELECT	2

16.8.4 526)PRESET SEL3(MSB)

Set the logic state of the preset speed block digital input.

PIN	Parameter description	Range		Defaul	t	
526	PRESET SELECT3 (MOST SIGNIFICANT BIT)	LOW HIGH		LOW		
		R	ENTRY I	MENU	LEVEL	1
			APPLIC	ATION B	LOCKS	2
			PRESET	SPEED		3
			526	PRESET	SEL3(MSI	B)

16.8.5 527)PR.VALUE FOR 000

Set a value for the preset speed block digital input code 000.

PIN	Parameter description	Range			Default	t	
527	PRESET VALUE FOR 000	±300.00%			0.00%		
			R	ENTRY I	MENU		1
				PRESET	SPEED	LUCKS	∠ 3
				5272	PR.VALU	je for	000

16.8.6 528)PR.VALUE FOR 001

Set a value for the preset speed block digital input code 001.

PIN	Parameter description	Range			Default	t	
528	PRESET VALUE FOR 001	±300.00%			0.00%		
			R	ENTRY	MENU	LEVEL	1
				APPLIC	ATION B	LOCKS	2
				PRESET	SPEED		3
				528	>PR.VALU	je for	001

16.8.7 529)PR.VALUE FOR 010

Set a value for the preset speed block digital input code 010.

PIN	Parameter description	Range			Defaul	t	
529	PRESET VALUE FOR 010	±300.00%			0.00%		
			R	ENTRY	MENU	LEVEL	1
							-
				HPPLIC	HIIUN B	LUCKS	2
				PRESET	SPEED		3
				5293	PR.VAL	JE FOR	010

16.8.8 530)PR.VALUE FOR 011

Set a value for the preset speed block digital input code 011.

PIN	Parameter description	Range			Default	t	
530	PRESET VALUE FOR 011	±300.00%			0.00%		
			R	ENTRY	MENU	LEVEL	1
				APPLIC	ATION B	LOCKS	2
				PRESET	SPEED		3
				530	PR.VALU	JE FOR Ø)11

16.8.9 531)PR.VALUE FOR 100

Set a value for the preset speed block digital input code 100.

PIN	Parameter description	Range			Defau	lt	
531	PRESET VALUE FOR 100	±300.00%			0.00%		
			R	ENTRY APPLIC PRESET	MENU ATION E SPEED SPR.VAL	LEVEL BLOCKS	1 2 3 100

16.8.10 532)PR.VALUE FOR 101

Set a value for the preset speed block digital input code 101.

PIN	Parameter description	Range			Defaul	t	
532	PRESET VALUE FOR 101	±300.00%			0.00%		
			R	ENTRY APPLIC PRESET	MENU ATION E SPEED SPR.VAL	LEVEL LOCKS	1 2 3 101

16.8.11 533)PR.VALUE FOR 110

Set a value for the preset speed block digital input code 110.

PIN	Parameter description	Range			Defaul	t	
533	PRESET VALUE FOR 110	±300.00%			0.00%		
			R	ENTRY	MENII	I FUFI	1
							-
				APPLIC	ATION E	BLOCKS	2
				PRESET	SPEED		3
				533	PR.VAL	UE FOR	110

16.8.12 534)PR.VALUE FOR 111

Set a value for the preset speed block digital input code 111.

PIN	Parameter description	Range			Default	t	
534	PRESET VALUE FOR 111	±300.00%			0.00%		
			R	ENTRY APPLIC	MENU ATION B	LEVEL LOCKS	1
				PRESET	SPEED		3
				534	>PR.VALU	JE FOR :	111

16.9 APPLICATION BLOCKS / MULTI-FUNCTION 1 TO 8

There are eight identical, independent MULTI-FUNCTION blocks, identified by the suffix 1 to 8. This description shows only the PINs for MULTI-FUNCTION 1.

They are used to perform simple signal processing on 1 or 2 signals.

Available functions are comparator, AND, OR, LOGIC INVERT, sign change, rectify, sample and hold.

These blocks may also be used as JUMPERS to make connections.

The following few pages show MULTI-FUNCTION 1 parameters.

 R
 ENTRY MENU
 LEVEL
 1

 APPLICATION BLOCKS
 2

 MULTI-FUNCTION
 1
 3

 544>MULTIFUN1
 MODE

 545>MULTIFUN1
 0P SEL

 GET FROM
 AUX GET FROM

 GOTO

Parameter	MULTI-FUNCTION 1	MULTI-FUNCTION 2	MULTI-FUNCTION 3	MULTI-FUNCTION 4	MULTI-FUNCTION 5	MULTI-FUNCTION 6	MULTI-FUNCTION 7	MULTI-FUNCTION 8	
MODE	544	546	548	550	552	554	556	558	
OP SEL	545	547	549	551	553	555	557	559	
Multi-function 1

Main input

Figure 71 MULTI-FUNCTION - block diagram

16.9.1 544)MULTIFUN1 MODE

Select one of seven transfer functions.

PIN	Parameter description	Range	Default
544	MULTI-FUNCTION 1 MODE	1 of 7 functions	C/O SWITCH

NOTE: A logical function will treat a linear signal as a logical 0 if its value is zero (any units). Any other value, including negative values, will be treated as a logical 1.

R ENTRY	MENU	LEVEL	1
---------	------	-------	---

- APPLICATION BLOCKS 2
- MULTI-FUNCTION 1 3

544)MULTIFUN1 MODE

Mode	Function	Function type	Outpu MULTI	t Descrip FUN1 OP	tion for SEL Enabled
0	C/O SWITCH Or JUMPER	Linear or logical	The val Use thi JUMPE	ue at the s for con RS are all	aux input nections if used
1	COMPARATOR	2 linear inputs, logical output	If MAIN If MAIN	N > AUX o N < AUX o	utput = 1 utput = 0
2	AND GATE	2 logical inputs, logical output	MAIN 0 0 1 1	AUX 0 1 0 1	Output 0 0 0 1
3	OR GATE	2 logical inputs, logical output	MAIN 0 0 1 1	AUX 0 1 0 1	Output 0 1 1 1
4	INVERT	1 logical input, logical output	MAIN 0 1	Output 1 0	(The invert function output is also the EXOR (exclusive OR) of MAIN and OP SELECT inputs)
5	SIGN CHANGER	1 linear input, logical output	Output	= MAIN 2	X (-1)
6	RECTIFIER	1 linear input, linear output	Output	= MAI	N

16.9.1.1 Sample and hold function

To perform a sample and hold, set both the AUX GET FROM source PIN and GOTO destination PIN to the same parameter, and set the MODE to 0. When **OUTPUT SELECT** is DISABLED, the output value follows the main input, whereas ENABLED causes it to hold the value pertaining at that time. Refer to "16.15.1 Sample and hold function" on page 318.

NOTE: To create an Exclusive OR function easily - the INVERT mode output is the EXOR (exclusive OR) of the MAIN and OP SELECT inputs.

16.9.2 545)MULTIFUN1 OP SEL

Enable/disable the output selected by the 544>MULTIFUN1 MODE parameter.

PIN	Parameter description	Range	Default
545	MULTI-FUNCTION 1 OUTPUT SELECT	DISABLED ENABLED	DISABLED

- When DISABLED, the main GETFROM value flows directly to the GOTO.
- When ENABLED, 1 of 7 transfer functions selected by the logic mode switch is then output to the GOTO.

When using this PIN as a logic **GETFROM** value with the main **GETFROM** value in INVERT mode, the **GOTO** is EXOR of the two GETFROM values.

R	ENTRY MENU	LEVEL	1
	APPLICATION	BLOCKS	2
	MULTI-FUNCTI	(ON 1	- 3
	545>MULTI	FUN1 OP	SEL

16.9.3 **GET FROM**

Set the PIN for the main GET FROM value source.

Paramete	er description	Range			Default	:	
GET FROM	1	000 to 720			400)Blo	ck Disco	nnect
			R	ENTRY APPLI MULTI GE	MENU CATION -FUNCTI T FROM	LEVE BLOCKS	L 1 2 3

16.9.4 AUX GET FROM

Set the PIN for the auxiliary GET FROM value source.

Parameter description	Range	Default
AUX GET FROM	000 to 720	400)Block Disconnect

R	ENTRY MENU	LEVEL	1
	APPLICATION	BLOCKS	2
	MULTI-FUNCTI	ON 1	3
		DOM	

16.9.5 GOTO

Set the target PIN for the multi-function GOTO signal.

Parameter description	Range			Default		
GOTO	000 to 720			400)Block	k disconne	ect
		R	ENTRY	MENU	LEVEL	1
			APPLI	CATION B	LOCKS	2
			MULTI	-FUNCTIO	N 1	3
			GO1	ro		

16.10 APPLICATION BLOCKS / LATCH

This block provides a standard D type latch function.

The PL/X scans the logic inputs at least once every 50 ms, and so the maximum operating frequency is 10 Hz.

The GOTO of this block resides in the CONFIGURATION < BLOCK OP CONFIG menu - refer to Page 361.

R	ENTRY MENU LEVEL	1
	APPLICATION BLOCKS	2
	LATCH	3
	560>LATCH OUTPUT MO	Ν
	561)LATCH DATA IP	
	562>LATCH CLOCK IP	
	563>LATCH SET IP	
	564>LATCH RESET IP	
	565)LATCH HI VALUE	
	566)LATCH LO VALUE	

Truth Tab	Truth Table				
SET	RESET	СГОСК	DATA	OUTPUT	
High	Low	Unimportant	Unimportant	Value for high	
Low	High	Unimportant	Unimportant	Value for low	
High	High	Unimportant	Unimportant	Value for high	
Low	Low	+VE EDGE	LOW	Value for low	
Low	Low	+VE EDGE	HIGH	Value for high	

16.10.1 560)LATCH DATA MON

Monitor the output value of the latch block.

PIN	Parameter description	Range
560	LATCH DATA MONITOR	±300.00%

R	E	NTRY	MENU	LEVI	EL	1
	A	PPLI	CATION	BLOCK	s	2
	LATCH					3
		560	DLATCH	I DATA	MON	

Figure 72 LATCH - block diagram

16.10.2 561)LATCH DATA IP

Set the logic level for the latch data input.

PIN	Parameter description	Range		Default	:	
561	LATCH DATA INPUT	LOW HIGH		LOW		
If the c	lock level has changed from a low to a h	igh since _R	ENTRY	MENU	LEVEL	1
(high o	r low) is placed on the latch output stage	e, giving	APPLIC	ATION B	LOCKS	2
an out	put value for high or low.		LATCH			3
The mi	nimum dwell time is 50 ms.		5613	LATCH C	DATA IP	

16.10.3 562)LATCH CLOCK IP

Set the logic level for the latch clock input.

PIN	Parameter description	Range		Default		
562	LATCH CLOCK INPUT	LOW HIGH	LOW			
If the	clock level has changed from a low to a h	igh since _R	ENTRY	MENU	LEVEL	1
(high or low) is placed on the latch output stage giving				ATION BL	_OCKS	2
an ou	tput value for high or low. Refer to the tr	uth table	LATCH			3
for a complete definition.			562	LATCH C	LOCK IP	

16.10.4 563)LATCH SET IP

Set the logic level for the latch set input.

PIN	Parameter description	Range		Default	t	
563	LATCH SET INPUT	LOW HIGH		LOW		
Refer t	o the truth table for a complete definitio	n. _R	ENTRY	MENU ATION B	LEVEL	1
			LATCH	LATCH :	SET IP	3

16.10.5 564) LATCH RESET IP

Set the logic level for the latch reset input.

PIN	Parameter description	Range	Default
564	LATCH RESET INPUT	LOW HIGH	LOW

Refer to the truth table for a complete definition.

R	ENTRY MENU LEVEL	1
	APPLICATION BLOCKS	2
	LATCH	3
	564)LATCH RESET IP	

16.10.6 565)LATCH HI VALUE

Set the output value for the latch high result.

PIN	Parameter description	Range			Defa	ult	
565	LATCH HIGH VALUE	±300.00%			0.01%	Ď	
			R	ENTRY	MENU	LEVEL	1
				APPLIC	ATION	BLOCKS	2
				LATCH			3
				_565)LATCH	I HI VALUE	

16.10.7 566)LATCH LO VALUE

Set the output value for the latch low result.

PIN	Parameter description	Range			Defau	lt	
566	LATCH LOW VALUE	±300.00%	±300.00%		0.00%		
		R		ENTRY APPLIC	MENU ATION I	LEVEL BLOCKS	1
							3
				566	>LATCH	lo value	

16.11 APPLICATION BLOCKS / FILTER 1, 2

These filters help eliminate mechanical resonance effects from the control system closed-loop. There are two identical FILTER blocks, identified by the suffix 1 and 2. This description shows only the PINs for FILTER 1.

Parameter	FILTER 1	FILTER 2	
OP MON	568	573	
TC	569	574	

Each filter has a time constant set by the user. With a value of 0.000, the filter is transparent.

There is also a simple low pass filter in the hidden PIN list: input is PIN 705, and output is PIN 706.

R	E	NTRY MENU LEVEL	1
	A	PPLICATION BLOCKS	2
	F	ILTER 1	3
		568)FILTER1 OP MON	
		569)FILTER1 TC	
		GET FROM	
		Сото	

The GOTO of this block resides in the CONFIGURATION > BLOCK OP CONFIG menu - refer to Page 361.

Filter 1

16.11.1 568)FILTER1 OP MON

Monitor the Filter 1 output.

PIN	Parameter description	Range
568	FILTER1 OUTPUT MONITOR	±315.00%

R	E	NTRY	MENU	LE	VEL	1
	AI	PPLI	CATION	BLOC	KS	2
	F	ILTE	R 1			3
		568	3)FILTE	R1 OF	° MON	

16.11.2 569)FILTER1 TC

Set the value of the time constant for the Filter 1 block.

PIN	Parameter description	Range		Default		
569	FILTER1 TIME CONSTANT	0.000 to 32.000 seconds		1.000 seconds		
Cascad second	le the filters for filter time constants over ls.	r 32.000 _R	ENTRY I	MENU ATION BL	LEVEL .0CKS	1 2
		FILTER	1		3	
		5693	FILTER1	тс		

16.11.3 GET FROM

Set the PIN for the filter input.

Parameter description	Range			Default	t	
GET FROM	000 to 720			400)Blo	ck disconn	ect
		R	ENTRY	MENU	LEVEL	1
			APPLI	CATION	BLOCKS	2
			FILTE	R 1		3
			GEI	FROM		

16.11.4 Fixed low pass filter

A simple low pass filter function with a cut-off frequency of approximately 10 Hz.

It can help with smoothing linear signals or eliminating resonances.

It uses hidden pins, and so the filter has no adjustments.

To use the filter, connect its input using a **GOTO** from another block and connect the output using the **GETFROM** of the destination block.

Figure 74 LOW PASS FILTER - block diagram

16.12 APPLICATION BLOCKS / BATCH COUNTER

This block provides a batch counter function. The minimum low or high logic input dwell time is 50 ms giving a maximum count frequency of 10 Hz. A positive clock transition causes the counter to count up.

If the count is equal to or greater than the target, then 582)COUNTER >=TARGET flag is set high.

The counter continues to count positive clock transitions unless the reset input is HIGH or until the counter reaches 32000. This feature is useful when using the counter to signal intermediate points within a complete batch.

The count target can change without interfering with the counting process.

The reset input resets the counter to zero.

R ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2 BATCH COUNTER 3 578)COUNTER COUNT 579)COUNTER CLOCK 580>COUNTER RESET 581)COUNTER TARGET 582)COUNTER>=TARGET

The GOTO of this block resides in the CONFIGURATION / BLOCK **OP CONFIG** menu - refer to Page 361.

Figure 75 BATCH COUNTER - block diagram and sample times

16.12.1 578)COUNTER COUNT

Monitor the batch counter value.

PIN	Parameter description	Range	Default
578	COUNTER COUNT	0 to 32000	0

NOTE: This value also appears on the GOTO.

R	ENTRY MENU LEVEL	1
	APPLICATION BLOCKS	2
	BATCH COUNTER	3
	578)COUNTER COUNT	

16.12.2 579)COUNTER CLOCK

The clock input logic level for the batch counter.

PIN	Parameter description	Range		Default		
579	COUNTER CLOCK	LOW HIGH		LOW		
The counter will increment on a positive clock transition.		R	ENTRY	MENU	LEVEL	1
			APPLIC	ATION B	LOCKS	2
		BATCH	COUNTER		3	
			579	COUNTER	CLOCK	

16.12.3 580)COUNTER RESET

Set the reset input for the batch counter.

PIN	Parameter description	Range		Default		
580	COUNTER RESET	LOW HIGH		LOW		
The re: holds r	set input resets the counter to zero. The eset while the reset input is high.	counter _R	ENTRY APPLIC BATCH 580	MENU ATION BL COUNTER COUNTER	LEVEL LOCKS	1 2 3

16.12.4 581)COUNTER TARGET

Set the target number for the batch counter.

PIN	Parameter description	Range			Default	:	
581	COUNTER TARGET	0 to 32000			32000		
When the batch counter value equals or exceeds the target value, the output 582>COUNTER >=TARGET goes high.		R	ENTRY APPLIC	MENU CATION BI	LEVEL LOCKS	1	
Changi countir	ng the counter target does not interfere ng process.	with the		ватсн _ 581	COUNTER	r targ	3 iET

16.12.5 582)COUNTER >=TARGET

Monitor the equal or greater flag.

PIN	Parameter description	Range		Default	:	
582	COUNTER >=TARGET	LOW HIGH		LOW		
When the batch counter value equals or exceeds the R target value, this flag goes HIGH.				MENU	LEVEL	1
NOTE	By using a jumper to connect this flag to	580)	APPLIC	ATION BL	LOCKS	2
COUNT	ER RESET, it is possible to make the cou	nter	BATCH	COUNTER		3
rollove countii	r at the counter target number and cont ng from 0 again.	inue	582	COUNTER	>=targe	T

16.13 APPLICATION BLOCKS / INTERVAL TIMER

The INTERVAL TIMER can control event sequencing in systems applications. For example, you can use it to make a motion control sequence wait before starting or delay a relay changeover.

Figure 76 INTERVAL TIMER - block diagram

16.13.1 583)TMR ELAPSED TIME

Monitor the interval timer elapsed time.

PIN	Parameter description	Range		Default		
583	TIMER ELAPSED TIME	0.1 to 600.0 se	0.0 seconds			
NOTE: connec	This value is the output of the block GOT tion.	0 _R	ENTRY APPLIC INTERV 583	MENU ATION BL AL TIMEF >TMR ELF	LEVEL _OCKS R IPSED TII	1 2 3 ME

16.13.2 584)TIMER RESET

Enable/disable the resetting of the timer.

PIN	Parameter description	Range			Default		
584	TIMER RESET	DISABLED ENABLED			DISABLED		
When ENABLED, the timer is reset and held at zero.			R	ENTRY	MENU	LEVEL	1
When I	DISABLED, the timer commences timing.			APPLIC	ATION B	LOCKS	2
				INTERVAL TIMER			3
				_5843	TIMER I	RESET	

16.13.3 585)TIMER INTERVAL

Set the time delay for the interval timer.

PIN	Parameter description	Range	Default			
585	TIMER INTERVAL	0.1 to 600.0 se	5.0 seconds			
		R	ENTRY	MENU	LEVEL	1
		APPLIC		ATION B	LOCKS	2
				AL TIME	२	3
			585	TIMER 1	INTERVAL	

16.13.4 586)TMR EXPIRED FLAG

Monitor the interval timer expired flag.

PIN	Parameter description	Range		Default		
586	TMR EXPIRED FLAG	LOW HIGH		LOW		
When the timer interval has expired, the timer expired flag goes high. It stays high until the next DISABLE input.			ENTRY APPLIC	MENU ATION BL	LEVEL _OCKS	1
NOTE: using a automa the tim	By connecting this flag to 584)TIMER Ri i jumper, it is possible to make the timer atically reset and repeat timing from zer- ner interval has expired."	ESET o once	INTERU 5863	AL TIMEF)TMR EXF	? 'IRED FLI	3 AG

16.14 APPLICATION BLOCKS / COMPARATOR 1 to 4

There are four identical COMPARATOR blocks, identified by the suffix 1 to 4, each with adjustable hysteresis and a window comparator mode option. This description shows only the PINs for COMPARATOR 1.

Parameter	COMPARATOR 1	COMPARATOR 2	COMPARATOR 3	COMPARATOR 4
INPUT 1	588	592	596	600
INPUT 2	589	593	597	601
WINDOW SEL	590	594	598	602
HYSTERESIS	591	595	599	603

R	E	NTRY	MENU	LEVEL	1
	A	PPLI	CATION	BLOCKS	2
	C	OMPAR	RATOR :	1	3
		588	COMP1	INPUT 1	
		589	COMP1	INPUT 2	
		590	COMP1	. WINDOW S	EL
		591	>COMP1	HYSTERES	IS
		GOT	0		

If the window comparator mode is DISABLED,

the block functions as a comparator with Input 1 on the comparator's positive input and Input 2 on the negative. It applies the hysteresis level above and below the value of input 1. The hysteresis range is 0 - 10.00%.

If the window comparator mode is ENABLED, the

value on Input 2 creates a symmetrical window around zero. If the value on Input 1 lies within the window, the comparator output is HIGH. Any hysteresis in the window mode applies at each boundary.

Figure 77 COMPARATOR 1 - block diagram

16.14.1 588)COMP1 INPUT 1

Set the level of input 1 of comparator 1.

PIN	Parameter description	Range		Defaul	t	
588	COMPARATOR1 INPUT 1	±300.00%		0.00%		
The GO)TO is high for Input 1 > Input 2 (algebra	ic). _R	ENTRY	MENU	LEVEL	1
The GO	DTO is low for Input 1 =< Input 2 (algebra	aic).	APPLI	CATION E	LOCKS	2
			COMPA	RATOR 1		3
			58	8)COMP1	INPUT 1	

16.14.2 589)COMP1 INPUT 2

Set the level of input 2 of comparator 1.

PIN	Parameter description	Range			Default		
589	COMPARATOR1 INPUT 2	±300.00%			0.00%		
The GO	DTO is high for Input 1 > Input 2 (algebra	R	ENTRY	MENU	LEVEL	1	
The GOTO is low for Input 1 =< Input 2 (algebraic).				APPLIC	ATION BL	LOCKS	2
				COMPAR	ATOR 1		3
				_589	COMP1 I	NPUT 2	

16.14.3 590)COMP1 WINDOW SEL

Enable/disable the window comparator mode.

PIN	Parameter description	Range			Defau	lt	
590	COMPARATOR1 WINDOW SELECT	DISABLED ENABLED		DISAB	LED		
The GOTO is low for Input 1 > or =< the window amplitude created by Input 2 (algebraic).					MENU	LEVEL BLOCKS	1
has a r	ange of ± Input 2.	.00% and		COMPAR	RATOR 1		3
If hyste the wir	eresis is applied, it operates at each bour ndow.		590	COMP1	WINDOW	SEL	

16.14.4 591)COMP1 HYSTERISIS

Set the level of hysteresis applied to input 1.

PIN	Parameter description	Range	Default
591	COMPARATOR1 HYSTERESIS	0 to 10.00%	0.50%

For example, a value of 1.00% would require:

- Input 1 to exceed Input 2 by more than 1.00% for a HIGH output,
- Input 1 to fall below Input 2 by 1.00% or more for a LOW output.

R	Eł	NTRY	MENU	LEVE	EL 1			
	AF	PPLI	CATION	BLOCKS	32			
	COMPARATOR 1							
		591	COMP1	HYSTE	RESIS			

16.14.5 GOTO

Set the PIN for the GOTO connection target parameter.

	Parameter description	Range		Default		
	GOTO	2 to 720		400)Block	Disconne	ct
NOTE: other t	To activate the block, connect the GOTO han 400)Block Disconnect .	to a PIN ^R	ENTRY APPL 1	' MENU CATION B	LEVEL LOCKS	1
			COMPR	RATOR 1		3
			GO	то		

16.15 APPLICATION BLOCKS / C/O SWITCH 1 TO 4

There are four identical Changeover Switch blocks, each with two inputs and one output. They are identified by the suffix 1 to 4. This description shows only the PINs for C/O SWITCH 1.

R

Parameter	C/O SWITCH 1	C/O SWITCH 2	C/O SWITCH 3	C/O SWITCH 4
CONTROL	604	607	610	613
HI VALUE	605	608	611	614
LO VALUE	606	609	612	615

E	NTRY MENU	I	LEV	EL	1
A	PPLICATIO	IN BL	OCK	s	2
C.	∕O SWITCH	11			3
	_604>C/0	SW1	CO	ITROL	-
	_605)C/0	SW1	HI	VALL	JE
	606)C/O	SW1	LO	VALU	JE
	GOTO				

16.15.1 Sample and hold function

A sample and hold function can be implemented by connecting the output to 606 > C \times O SW1 LO VALUE:

- The value on 605>C < 0 SW1 HI VALUE transfers to 606>C < 0 SW1 L0 VALUE when 604>C < 0 SW1 CONTROL is HIGH.
- The value on 605>C < 0 SW1 HI VALUE holds at the value pertaining when 604>C < 0 SW1 CONTROL is LOW.

16.15.2 604)C/O SW1 CONTROL

Set the changeover switch position to the LO or HI input.

PIN	Parameter description	Range	Default
604	CHANGEOVER SWITCH 1 CONTROL	LOW HIGH	LOW

R	ENTRY	MENU	LEVEL	1

- APPLICATION BLOCKS 2
- C/O SWITCH 1 3

604)C/O SW1 CONTROL

16.15.3 605)C/O SW1 HI VALUE

Set the level for the input selected by a logic HIGH control mode.

PIN	Parameter description	Range			Defaul	t	
605	CHANGEOVER SWITCH 1 HIGH VALUE	±300.00%		0.00%			
			R	ENTRY	MENU	LEVEL	1

R	ENTRY MENU	LEVEL	1
	APPLICATION	BLOCKS	2
	C/O SWITCH 1		3

605)C/O SW1 HI VALUE

16.15.4 606)C/O SW1 LO VALUE

Set the level for the input selected by a logic LOW control mode.

PIN	Parameter description	Range			Default	:	
606	CHANGEOVER SWITCH 1 LOW VALUE	±300.00%			0.00%		
			R	ENTRY	MENU	LEVEL	1

APPLICATION BLOCKS	2
C/O SWITCH 1	3

606)C/0 SW1 LO VALUE

16.15.5 C/O SW1 LO VALUE

Set the PIN for the GOTO connection target parameter.

	Parameter description	Range		Default		
	GOTO	2 to 720		400)Block Disconnec		ct
NOTE: other t	To activate the block, connect the GOTO han 400>Block Disconnect .	to a PIN _R	entry Appli	MENU CATION BL	LEVEL _OCKS	1 2
			C∕0 S	WITCH 1		3
			GO'	го		

16.16 APPLICATION BLOCKS / 16-BIT DEMULTIPLEX

The primary use for this block is to extract individual alarm flags from parameters 181) ACTIVE TRIP MON or 182) STORED TRIP MON.

The valued stored in the Alarms monitor parameters is a 4-character hex code containing 16 different alarm flags.

Connect a GET FROM to PIN 181 for the active flags or PIN 182 for the stored flags to retrieve a 4-character hex code.

If used for this purpose, the individual O/P bits 1 to 16 are available on the allocated PINs:

Description	PIN
Armature overcurrent	535
Speed fbk mismatch	536
Overspeed	537
Armature overvolts	538
Field overcurrent	539
Field loss	540
Missing pulse	541
Stall trip	542
Thermistor on T30	543
Heatsink overtemp	567
Short circuit digital output	570
Bad reference Exch	571
Contactor lockout	572
User alarm input (PIN 712)	575
Synchronisation loss	576
Supply phase loss	577

R ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2 16-BIT DEMULTIPLEX 3 GET FROM 535)DEMULX O/P BIT1 536)DEMULX 0/P BIT2 537) DEMULX O/P BIT3 538) DEMULX 0/P BIT4 539) DEMULX 0/P BIT5 540) DEMULX 0/P BIT6 541) DEMULX O/P BIT7 542) DEMULX 0/P BITS 543) DEMULX 0/P BIT9 567) DEMULX 0/P BIT10 570) DEMULX O/P BIT11 571) DEMULX 0/P BIT12 572) DEMULX 0/P BIT13 575) DEMULX 0/P BIT14 576)DEMULX O/P BIT15 577) DEMULX O/P BIT16

Figure 79 16-bit Demultiplex - block diagram

17 The CONFIGURATION menu

The drive's internal block diagram connections can be re-configured using the legacy PL PILOT configuration tool or the HMI.¹

To begin a configuration session, you must set the parameter CONFIGURATION \prime ENABLE GOT0, GETFROM to ENABLED.

To end a configuration session, you must set the parameter CONFIGURATION \times ENABLE GOT0, GETFROM to DISABLED.

17.1 How to configure blocks

For example, to activate a block in the **BLOCK OP CONFIG** menu:

- 1. Set CONFIGURATION / ENABLE GOTO, GETFROM to ENABLED.
- In the CONFIGURATION menu, navigate to BLOCK OP CONFIG to find the appropriate GOTO.

GOTOs in CONFIGURATION / BLOCK OP CONFIG					
RUN MODE RAMPS GOTO	TAPER CALC GOTO				
MOTORISED POT GOTO	T / COMP +CUR LIM GOTO				
REF EXCH SLAVE GOTO	T / COMP - CUR LIM GOTO				
SUMMER1 GOTO	PRESET SPEED GOTO				
SUMMER2 GOTO	LATCH GOTO				
PID1 GOTO	FILTER1 GOTO				
PID2 GOTO	FILTER2 GOTO				
PARAMETER PRFL GOTO	BATCH COUNTER GOTO				
DIAMETER CALC GOTO	INTERVAL TIMER GOTO				

NOTE: You can find the GOTOs for MULTI-FUNCTION 1 to 8, COMPARATOR 1 to 4, and C/O SWITCH 1 to 4 in their respective block menus in the CONFIGURATION MENU.

- 3. Configure the desired block's GOTO to a PIN other than the default setting of 400> BLOCK DISCONNECT.
- 4. Set **CONFIGURATION / ENABLE GOTO**, **GETFROM** to DISABLED. This action will begin a background "conflict checker" to look for and report any conflicts (below).

17.1.1 CONFLICT HELP MENU

When you set **CONFIGURATION / ENABLE GOTO**, **GETFROM** to DISABLED having finished configuring blocks, a background conflict checker is initiated that looks for conflicts.

It is not possible to make illegal connections (e.g. from an output to an output). However, you can incorrectly connect more than one GOTO to a legal pin (e.g. an input), resulting in an error at the target pin.

When the "conflict checker" finds a conflict:

- 1. The message GOTO CONFLICT is displayed.
- 2. Correct the conflict.

This process repeats until no conflicts are displayed.

¹ You can also use an Ethernet-based distributed control system (DCS) hardware and software. It may complete the **ENABLE GOTO**, **GETFROM** settings automatically.

17.2 CONFIGURATION

There are 720 parameters used in the process of configuration, each with a unique identifying PIN. The PINs identify the connection points made during Configuration.

R

Each parameter stores a value. By connecting parameters, you can pass the value of the source parameter to the target parameter.

There are four methods of connecting parameters during a Configuration session using a configurable block's inputs and outputs:

GOTO	This is the output of a block. It can connect to any parameter but not to another GOTO or a GET FROM.
GET FROM	This is the input of a block. It can connect to any parameter but not to another GET FROM or a GOTO. A block may also have an AUX GET FROM (which is a second GET FROM).
JUMPER	This is a virtual wire that connects two parameters using its own GOTO and GET FROM.
STAGING POST	This is a parameter that stores a value and connects to a GOTO and a GET FROM.

Using a combination of these methods, you can construct very simple to very complex systems.

- Any parameter can only be written to by one GOTO.
- A GET FROM can only be read from one parameter.
- Connect the same parameter to multiple GET ٠ FROMs

ENTRY MENU LEVEL	1
CONFIGURATION	2
ENABLE GOTO, GETFR	DM
UNIVERSAL INPUTS	3
ANALOG OUTPUTS	3
DIGITAL INPUTS	3
DIGITAL IN/OUTPUT	S 3
DIGITAL OUTPUTS	3
STAGING POSTS	3
SOFTWARE TERMINAL	s 3
JUMPER CONNECTION	5 J
BLOCK OP CONFIG	3
FIELDBUS CONFIG	3
DRIVE PERSONALITY	3
CONFLICT HELP MEN	UЗ

17.2.1 CONFIGURATION / ENABLE GOTO, GETFROM

ENABLE/DISABLE the option to configure the internal system connections.

An Ethernet-based distributed control system (DCS) hardware and software may complete the following automatically.

Configu To begin set CONF to ENABL	Configuration using the HMI To begin a Configuration session, you must set CONFIGURATION < ENABLE GOTO, GETFROM to ENABLED.						
	ENABLE GOTO,GETFROM ENABLED						
Atter with GOTO To end a CONFIGU	Attempting to make a connection without doing this will cause ENABLE GOTO, GETFROM to be displayed. To end a Configuration session, you must set						
to DISAB	LED.						
	ENABLE GOTO,GETFROM DISABLED						
The PL/X of GOTO Refer to page 323	The PL/X now runs a "Conflict Checker" to warn of GOTO connection conflicts. Refer to "17.1.1 CONFLICT HELP MENU" on page 323.						

- R ENTRY MENU LEVEL 1
 - CONFIGURATION 2

ENABLE GOTO, GETFROM

17.3 CONFIGURATION / UNIVERSAL INPUTS

The PL/X has eight analog inputs.

The voltage range for each input is programmable to ± 5/10/20/30 V. This allows for using signals other than 10 V full scale, enabling it for use as a sophisticated digital input. To achieve this, for example, select the input to the 30 V range, and set the programmable logic threshold to be 15 V to recognise a 0 or 1.

UIP3 is specially adapted to acquire signals with a faster response than the other inputs and is therefore valuable for inputting to a speed/current loop that requires a quicker response.

There is a permanent internal connection to the speed/ current loop from UIP3 to 64) SPEED REF 3 MON:

- The default connection configures the linear GOTO • of UIP3 to 400)Block Disconnect and operates independently of the internal connection to the speed/current loop.
- To connect UIP3 elsewhere, nullify this internal connection by setting 67) SPD / CUR RF3 RATIO in the CHANGE PARAMETERS / SPEED REF SUMMER menu to 0.0000, then reconfigure the linear GOTO as required. The parameter 64) SPEED REF 3 MON is a monitor of the UIP3 analog output.

R	E	NTRY	MENU		LEVEL	-	1
	C	ONFIC	GURAT	ION			2
	U	NIVER	SAL	INPU	TS		3
		UIP	2 (T)	2) SE	ETUP		4
		UIP	з (т.	3) SE	ETUP		4
		UIP	4 (Te	4) SE	ETUP		4
		UIP	5 (T	5) SE	ETUP		4
		UIP	6 (Te	5) SE	ETUP		4
		UIP	7 (T)	7) SE	ETUP		4
		UIP	8 (T8	3) SE	ETUP		4
		UIP	9 (TS	9) SE	ETUP		4

17.4 CONFIGURATION / UNIVERSAL INPUTS / UIP2 to 9

PL/X terminals T2 to T9 are provided respectively with their processing block UIP2 to UIP9. Each processing block has three outputs: one linear output and a dual-logic output. This description shows only the PINs for UIP2.

NOTE: UIPs offer increased noise immunity when compared to DIPs and DIOs.

The processing block provides the following functions:

- Range selectable ± (5, 10, 20, 30V)
- Linear functions
- Linear offset
- Signed scaling
- · Clamping of the linear output

Logic functions

- An adjustable threshold for logic level detection.
- The UIP2 THRESHOLD comparator output can be a low or a high:
 - The high state results in the HI VAL being output.
 - The low state results in the LO VAL being output.

To turn the function into a changeover switch for dynamic values, enter the values for LO VAL and HI VAL using the display and keys, or connect to them from other PINs using JUMPERS:

There are two sets of HI VAL and LO VAL parameters. Each pair possess a GOTO connection facility, allowing independent output values for two logic high inputs and two logic low inputs. These versatile

R	ENTRY MENU LEVEL	1
	CONFIGURATION	2
	UNIVERSAL INPUTS	3
	UIP2 (T2) SETUP	4
	320)UIP2 IP RANGE	
	321)UIP2 IP OFFSET	
	322)UIP2 CAL RATIO	
	323)UIP2 MAX CLAMP	
	324)UIP2 MIN CLAMP	
	UIP ANALOG GOTO	
	UIP DIGITAL OP1 GOT	0
	UIP DIGITAL OP2 GOT	0
	325)UIP2 HI VAL OP1	
	326)UIP2 LO VAL OP1	
	327)UIP2 HI VAL OP2	2
	328)UIP2 LO VAL OP2	2
	329)UIP2 THRESHOLD	

Parameter	UIP2	UIP3	UIP4	UIP5	UIP6	UIP7	UIP8	UIP9
IP RANGE	320	330	340	350	360	370	380	390
OFFSET	321	331	341	351	361	371	381	391
CAL RATIO	322	332	342	352	362	372	382	392
MAX CLAMP	323	333	343	353	363	373	383	393
MIN CLAMP	324	334	344	354	364	374	384	394
HI VAL OP1	325	335	345	355	365	375	385	395
LO VAL OP1	326	336	346	356	366	376	386	396
HI VAL OP2	327	337	347	357	367	377	387	397
LO VAL OP2	328	338	348	358	368	378	388	398
THRESHOLD	329	339	349	359	369	379	389	399

parameter changeover functions are selectable by a single input.

For example, you might have the **DIGITAL** OP1 GOTO value change to target PIN XXX and simultaneously have DIGITAL OP2 GOTO logic change to target PIN YYY.

For logic-only usage:

- A value of 0.00% reads as a LOW
- Any nonzero ± value reads as a HIGH

Invert the logic by entering:

0.00% in the HI VAL parameter and 0.01% in the LO VAL parameter.

UIP2 (T2) Digital IO Monitor

UIP2 (T2) Speed Reference

Figure 80 UIP2 (Universal Inputs) - block diagram

17.4.1 320)UIP2 IP RANGE

Select the '0 to ±100%' voltage range of the UIP2 input signal.

PIN	Parameter description	Range	Default
320	UIP2 INPUT RANGE	±10 V ±5 V ±20 V ±30 V	±10 V

For example: for a range setting of 0, an input signal of ± 10 V = 100%. Similarly, for a range setting of 1, an input signal of ± 5 V = 100%, and so on.

The ± 5 V and ± 10 V ranges are the most accurate (0.4%, typically 0.1%).

The ±20 V and ±30 V ranges use resistor divider networks and their absolute accuracy is 4%. Also, the source impedance of the signal connected to the terminal must be as low as possible if it is in use externally elsewhere because the input impedance for these ranges can vary between 100K and 50K as the PL/X scans the inputs. A source of signal with a high input impedance will be affected by the change in input resistance. It will not affect the reading's accuracy within the PL/X, but may cause an external measurement by another instrument to vary. It is important to remember this when commissioning, as readings at the control terminals with a voltmeter may show slight variations if the source impedance is high. The 5 V and 10 V ranges are not affected by source impedance.

R ENTRY MENU LEVEL 1 CONFIGURATION 2 UNIVERSAL INPUTS 3 UIP2 (T2) SETUP 4

320)UIP2 IP RANGE

17.4.2 321)UIP2 IP OFFSET

Set the level of bipolar offset to be added to the input signal.

PIN	Parameter description	Range	Default
321	UIP2 INPUT OFFSET	±100.00%	0.00%

NOTE: +/-100% always represents a +/-10 V offset, independent of the selected range. Therefore when selecting range 5 V, 20 V or 30 V, the offset addition remains at +/10 V for +/-100% and hence no longer represents a true percentage of the range. Whereas, for the default 10V input range, the offset percentage represents the volts and the true percentage.

For example, for a 2 V offset to a signal using the range 5 V, 20 V, 30 V or 10 V, enter the value 20.00%

The addition/subtraction of the offset occurs before the scaling function. The offset does not affect the signal used for the digital threshold comparison.

17.4.2.1 4-20 mA loop input SETUP

When using 4-20 mA loop signals, fit an external burden resistor of 220 Ω between the input and 0 V. By passing the signal current through the burden, the resulting voltage signal generated will be +0.88 V for 4 mA (representing 0%) and 4.4V for 20 mA (representing 100%).

Using the appropriate UIPX SETUP block, select the following:

IP RANGE = 5 V (maximum voltage generated by loop across the burden = 4.4V)

IP OFFSET = -8.8% (4 mA gives 0.88 V). (Note that offset is always for +/-100% = +/-10 V)

CAL RATIO = 1.420 scaling factor ((4.4 – 0.88) x 1.420= 5 V, i.e. 100%)

For burden resistors of other values, the range, offset, and scale will differ accordingly.

R	ENTRY MENU LEVEL	_ 1
	CONFIGURATION	2
	UNIVERSAL INPUTS	3
	UIP2 (T2) SETUP	4

321)UIP2 IP OFFSET

17.4.3 322)UIP2 CAL RATIO

Set a linear scaling factor for the signal at the UIP2 input.

PIN	Parameter description	Range	Default
322	UIP2 CALIBRATION RATIO	±3.0000	1.0000

NOTE: This linear scaling factor does not affect the signal used for the digital THRESHOLD comparison.

Use this scaling factor to introduce an inversion by selecting a negative number. A scaling factor of 1.0000 is equivalent to 100.00%. In this case, the full range of the input selection in the range selection window corresponds to a 100.00% signal:

For example, with the 30 V range selected and a scaling factor of 1.0000, then a signal of 30 V would represent a demand of 100.00% speed.

R ENTRY MENU LEVEL 1 CONFIGURATION 2 UNIVERSAL INPUTS 3 UIP2 (T2) SETUP 4 322)UIP2 CAL RATIO

17.4.4 323)UIP2 MAX CLAMP

Set an upper clamp level for the scaled linear input signal.

PIN	Parameter description	Range	Default
323	UIP2 MAXIMUM CLAMP	±300.00%	+100.00%

R	ENTRY MENU LEVEL	1
	CONFIGURATION	2
	UNIVERSAL INPUTS	3
	UIP2 (T2) SETUP	4
	323)UIP2 MAX CLAM	IP

17.4.5 324)UIP2 MIN CLAMP

Set a lower clamp level for the scaled linear input signal.

PIN	Parameter description	Range		Default	t	
324	UIP2 MINIMUM CLAMP	±300.00%		-100.00	%	
			R ENTRY	MENU	LEVEL	1

	-
CONFIGURATION	2
UNIVERSAL INPUTS	3
UIP2 (T2) SETUP	4
324>UIP2 MIN CLAMP	

17.4.6 UIP ANALOG GOTO

Set the target destination PIN for the analog connection to UIPx.

Parameter description	Range	Default
UIP ANALOG GOTO	000 to 720	See table

R	ENTRY	MENU	LEVEL	1
	CONFIG	URATION		2
	UNIVER	SAL INPU	JTS	3
	UIP2 (T2> SETU	JP	4
	UIP	ANALOG	GOTO	

UIPX	Term	Analog GOTO	Default connection name	Default connection PIN
UIP2	2	Analog GOTO	Auxiliary speed reference	63)SPEED REF 2
UIP3	3	Analog GOTO	Speed reference / current demand (Fast IP) (internally connected, not using the GOTO)	400>Block Disconnect
UIP4	4	Analog GOTO	Ramp input	26)RAMP INPUT
UIP5	5	Analog GOTO	Lower current clamp (-ve)	90>LOWER CUR CLAMP
UIP6	6	Analog GOTO	Main current limit / Upper current clamp +ve	89>UPPER CUR CLAMP
UIP7	7	Analog GOTO	Not connected	400)Block Disconnect
UIP8	8	Analog GOTO	Not connected	400)Block Disconnect
UIP9	9	Analog GOTO	Not connected	400)Block Disconnect

17.4.7 UIP DIGITAL OP1 GOTO

Set the target destination PIN for the logic connection to UIPx.

Parameter description	Range	Default		
UIP DIGITAL OP1 GOTO	000 to 720	See table		

 R
 ENTRY MENU
 LEVEL
 1

 CONFIGURATION
 2

 UNIVERSAL INPUTS
 3

 UIP2 (T2) SETUP
 4

 UIP DIGITAL OP1 GOTO

UIPX	Term	DIG OP1 GOTO	Default connection name	Default connection PIN
UIP2	2	DIG OP1 GOTO	Not connected	400)Block Disconnect
UIP3	3	DIG OP1 GOTO	Not connected	400)Block Disconnect
UIP4	4	DIG OP1 GOTO	Not connected	400)Block Disconnect
UIP5	5	DIG OP1 GOTO	Not connected	400)Block Disconnect
UIP6	6	DIG OP1 GOTO	Not connected	400)Block Disconnect
UIP7	7	DIG OP1 GOTO	Motorised pot preset enable	52>MP PRESET
UIP8	8	DIG OP1 GOTO	Motorised pot up command	48>MP UP COMMAND
UIP9	9	DIG OP1 GOTO	Motorised pot down command	49>MP DOWN COMMAND

17.4.8 UIP DIGITAL OP2 GOTO

Set the target destination PIN for the logic connection to UIPx.

Parameter description	Range			Defa	ult		
UIP DIGITAL OP2 GOTO	000 to 720			400)	Block [Disconn	ect
The default setting for all UIP DIGITAL OP2 (connections is 400)Block Disconnect .	GOTO	R	ENTRY CONFI UNIVE UIP2	MENU GURA1 RSAL (T2) P DIG	J L TION INPUT SETUR	-EVEL rs oP2 GC	1 2 3 4 TO

17.4.9 325)UIP2 HI VAL OP1

Set the OP1 value selected by a high UIP2 input.

PIN	Parameter description	Range	Default
325	UIP2 HIGH VALUE OUTPUT1	±300.00%	0.01%

R	ENTRY MENU	LEVEL	. 1
	CONFIGURAT	I ON	2
	UNIVERSAL	INPUTS	3
	UIP2 (T2) 9	SETUP	4
	325>UIP2	HI VAL	OP1

17.4.10 326)UIP2 LO VAL OP1

Set the OP1 value selected by a low UIP2 input.

PIN	Parameter description	Range	Default
326	UIP2 LOW VALUE OUTPUT1	±300.00%	0.01%

R	ENTRY MENU LEVEL	1
	CONFIGURATION	2
	UNIVERSAL INPUTS	3
	UIP2 (T2) SETUP	4
	326)UIP2 LO VAL OP:	L

17.4.11 327)UIP2 HI VAL OP2

Set the OP2 value selected by a high UIP2 input.

PIN	Parameter description	Range			Default			
327	UIP2 HIGH VALUE OUTPUT2	±300.00%			0.0	1%		
			R	ENTRY	MENL) LI	EVEL	1
				CONFIG	iurat	ION		2
				UNIVER	SAL	INPUT	S	3
				UIP2 (T2)	SETUP		4
				327)UIP	2 HI (JAL OP2	2
17.4.12 328)UIP2 LO VAL OP2

Set the OP2 value selected by a low UIP2 input.

PIN	Parameter description	Range		Default	t	
328	UIP2 LOW VALUE OUTPUT1	±300.00%		0.01%		
		R	ENTRY	MENU	LEVEL	1

R	ENTRY MEN	U	LEVE		1
	CONFIGURA	TION			2
	UNIVERSAL	INPL	JTS		3
	UIP2 (T2)	SETU	JP		4
	328)014	2 LC) VAL	0P2	

17.4.13 329)UIP2 THRESHOLD

Set the threshold determining logic HI/LO for UIP2.

PIN	Parameter description	Range	Default			
329	UIP2 THRESHOLD	±30.000 V		6.000 V		
For exa thresh signals than of	ample, by setting the range input to 20 o old of 15.000 V causes the output to go h greater than +15.000 V and low for sign r equal to +15.000 V.	r 30 V, a _R _l igh for als less	ENTRY CONFIG UNIVER UIP2 (MENU URATION SAL INPL T2) SETL	LEVEL JTS JP	1 2 3 4
			329	UIP2 TH	RESHOLD	

17.5 CONFIGURATION / ANALOG OUTPUTS

There are four analog outputs: AOP1 to AOP3 (terminals T10 to T12) are programmable, plus one analog output on T29 representing armature current.

AOP1/2/3 - Programmable output specification:

- 12-bit +sign resolution (2.5 mV steps).
- Short-circuit protection to 0 V. (Protection is only available for any one of the outputs. More than one output shorted may damage the PL/X).
- Output current +/-5 mA maximum.
- Output range 0 to +/-11.300 V. (10 V normally represents 100%).

R	Eł	NTRY M	ENU	LEVEL	1	
	CONFIGURATION					
	ANALOG OUTPUTS					
	250)Iarm OP RECTIF					
		AOP1	(T10)	SETUP	4	
		AOP2	(T11)	SETUP	4	
		AOP3	(T12)	SETUP	4	
		260)9	SCOPE (OP SELEC	т	

17.5.1 250)Iarm OP RECTIFY

Select Iarm output (T29) mode to bipolar (disabled) or rectified (enabled).

17.5.2 260)SCOPE OP SELECT

Feedback - block diagram

Enable/disable the AOP3 outputting of any parameter shown on the HMI.

PIN	Parameter description	Range		Defa	ult	
260	0 SCOPE OUTPUT SELECT DISABLED ENABLED		DISA	BLED		
When ENABLED, AOP3 outputs a linear signed signal representing whichever parameter is displaying currently on the HMI. Use parameter 257 > AOP3			R EN	TRY MENU	LEVEL	1
DIVIDER to scale the output (default 100% gives 10 V). NOTE: Any internal GETFROM connection made to AOP3 is left intact but ignored by this 260>SCOPE OP SELECT function				alog outp 260>SCOPI	uts E op selec	3 СТ

Figure 82 AOP1 (T10) Speed Feedback - block diagram

Figure 83 AOP2 (T11) Total Speed Reference - block diagram

Figure 84 AOP3 (T12) Total Current Demand - block diagram

17.6 ANALOG OUTPUTS / AOP1/2/3 SETUP

There are three menus, one for each analog output.

Parameter	AOP1	AOP2	AOP3	
DIVIDER	251	254	257	
OFFSET	252	255	258	
RECTIFY EN	253	256	259	

Before placing this output on the terminal as a linear voltage, you can select these outputs to be BIPOLAR or RECTIFIED.

R	ENTRY MENU	EL 1
	CONFIGURATION	2
	ANALOG OUTPUTS	3
	AOP1 (T10) SETUP	4
	251)AOP1 DIVID 252)AOP1 OFFSE 253)AOP1 RECTI GET FROM	er T Fy en

17.6.1 Default connections for AOP1/2/3

ΑΟΡΧ	Function	Terminal	GET FROM
AOP1	Unfiltered total speed feedback	T10	715)SPD FBK % UNF
AOP2	Unfiltered total speed reference	T11	123) TOTAL SPD REF MN
AOP3	Unfiltered armature current demand	T12	718) CUR DEMAND UNF

17.6.2 251)AOP1 DIVIDER

Set a signed factor to divide the GET FROM signal source.

PIN	Parameter description	Range	Default
251	AOP1 DIVIDER	±3.0000	+1.0000

This is usually set to provide a maximum amplitude of 10 V for the terminal signal voltage:

The PL/X default 100.00% voltage is 10.00 V. Therefore, a dividing factor of 1.000 gives 10.00 V amplitude for 100.00% signals.

The divider function allows high gains, if required, by dividing by numbers less than 1.0000. This scaling takes place before the addition of the OFFSET parameter.

R	ENTRY MENU LEVEL	1				
	CONFIGURATION	2				
	ANALOG OUTPUTS					
	AOP1 (T10) SETUP	4				
	251)AOP1 DIVIDER					

17.6.3 252)AOP1 OFFSET

Set the level of bipolar offset to be added to the final signal.

PIN	Parameter description	Range		Default	:	
252	AOP1 OFFSET	±100.00%		0.00%		
NOTE: 100.00% is equivalent to 10.00V. Changing the divider factor will not affect the offset value.			ENTRY	MENU	LEVEL	1
			CONFIG	URATION		2
			ANALOG	OUTPUT	s	3
				T10> SE	TUP	4
			_252	XAOP1 OF	FFSET	

17.6.4 253)AOP1 RECTIFY EN

Select AOP1 (T10) output mode to select bipolar or rectified.

PIN	Parameter description	Range			Default		
253	OP1 RECTIFY EN DISABLED DISABLED DISABLED			ED			
ENABLED = Rectified. DISABLED = Binolar			R	ENTRY	MENU	LEVEL	1
		2.00.001	CONFIG	URATION		2	
			A	ANALOG	OUTPUT	s	3
				AOP1 (T10> SE	TUP	4
				_253)AOP1 RI	ECTIFY	EN

17.6.5 **GET FROM**

Set the source PIN for the connection to AOPX.

Parameter description	Range		Default	:	
GET FROM	PIN 000 to 720		See table		
			MPLU I		
	ĸ	ENIKY	PIENU	LEVEL	1
	CONFIG		GURATION		2
		ANALOG	OUTPUT	S	3
	AOP1		T10> SE	TUP	4
		GET	FROM		

17.7 CONFIGURATION / DIGITAL INPUTS

There are four digital logic inputs DIP1/2/3/4 located on terminals T14/15/16/17, plus the RUN input on T31. You can use the DIP inputs for incremental encoder or register mark inputs. In this case, the logic functions will continue to operate as described here.

Parameter	DIP1	DIP2	DIP3	DIP4
IP HI VALUE	310	312	314	316
IP LO VALUE	311	313	315	317

17.7.1 Using DIP inputs for encoder signals

Logic thresholds: 0 < 2V, 1 > 4V.

NOTE: When using encoders with quadrature outputs, the phase relationship of the two pulse trains must remain as close to 90 degrees as possible. Mounting the encoder inaccurately and off-centre can cause skewing of the internal optics as the shaft rotates through 360 degrees producing a severe degradation of the phase relationship on a cyclical basis.

If the encoder appears to gyrate as the shaft rotates, you must rectify the problem before proceeding with commissioning. The best way of checking the output is to use a high-quality oscilloscope and observe both pulse trains for good phase holding and no interference. Do this with the drive rotating to $\pm 100\%$ speed using AVF as the feedback source.

R	ENTRY MENU	1
	CONFIGURATION	2
	DIGITAL INPUTS	3
	DIP1 (T14) SETUP	4
	DIP2 (T15) SETUP	4
	DIP3 (T16) SETUP	4
	DIP4 (T17) SETUP	4
	RUN IP SETUP	4

Refer to "11.2 CHANGE PARAMETERS/CALIBRATION/ ENCODER SCALING" on page 127 for more information about encoder feedback.

NOTE: If a logic input with high noise immunity is required, we recommend using a UIP.

Figure 85 Digital inputs, showing DIP1 (T14) - block diagram

17.8 CONFIGURATION / DIGITAL INPUTS / DIP1 (T14) SETUP

Drive terminals T14 to T17 are provided with processing blocks DIP1 to DIP4, respectively. This description shows only the PINs for DIP1.

Enter the LO VAL and HI VAL values using the PL/X HMI, or use JUMPERS to retrieve them from other PINs. This turns the function into a change-over switch for dynamic values:

For logic-only usage:

- A value of 0.00% is read as a low
- Any nonzero ± value is read as a high

Achieve logic inversion by entering:

0.00% in the HI VAL parameter and 0.01% in the LO VAL parameter.

17.8.1 310) DIP1 IP HI VALUE

Set the level of the value selected by a high DIP1 input.

R	E١	ITR	' M	ENU		LEV	EL	1
	CC		2					
	DI	GIT	AL	INF	PUTS			3
	DI	P1	(T	14>	SET	UP		4
		31	0)I	DIP1	IP	HI	VAL	UE
		31	1)I	DIP1	IP	LO	VAL	UE
	[GO	то					

PIN	Parameter description	Range			Defau	lt	
310	DIP1 INPUT HIGH VALUE	±300.00%			0.01%		
NOTE: this as	You can make a simple AND gate by sele the target PIN of a logical GOTO.	ecting	R	ENTRY CONFIG DIGITA DIP1 (MENU SURATIO IL INPU T14> S	LEVEL N TS ETUP	1 2 3 4

17.8.2 311) DIP1 IP LO VALUE

Set the level of the value selected by a low DIP1 input.

PIN	Parameter description	Range		Defaul	t	
311	DIP1 INPUT LOW VALUE	±300.00%		0.00%		
NOTE: as the t	You can make a simple OR gate by selec target PIN of a logical GOTO.	ting this _F	ENTRY CONFIG DIGITA DIP1 (311)	MENU URATION L INPUT: T14) SE [.] DIP1 IF	LEVEL 3 TUP 9 LO VAL	1 2 3 4 UE

17.8.3 **GOTO**

Set the target source PIN for the connection to DIP1.

Parameter description	Range		Defa	ult	
GOTO	PIN 000 to 720		See table		
	P		MELUI		
	R	ENIRY	PIENU	LEVEL	1
		CONFIG		ON	2
		DIGITA	L INP	UTS	3
	DIP1 (T14>	SETUP	4
		GOT	0		

DIPX	Terminal	Function	High value	Low value	Default connection PIN
DIP1	T14	Spare input	0.01% (High)	0.00% (Low)	400)Block Disconnect
DIP2	T15	Marker input	0.01% (High)	0.00% (Low)	400)Block Disconnect
DIP3	T16	Encoder input (B train)	0.01% (High)	0.00% (Low)	400)Block Disconnect
DIP4	T17	Encoder input (A train)	0.01% (High)	0.00% (Low)	400)Block Disconnect

17.9 CONFIGURATION / DIGITAL INPUTS / RUN IP SETUP

In the unlikely event that there is a shortage of digital inputs, you can use the RUN input.

The default GOTO PIN usually used by the RUN input is called **308**>**INTERNAL RUN IP** and must be set to a logic high when the RUN input terminal is disconnected.

Refer to "17.15.4 308)INTERNAL RUN IP" on page 359.

R ENTRY MENU LEVEL 1 CONFIGURATION 2 DIGITAL INPUTS 3 RUN IP SETUP 4 318)RUN IP HI VALUE

319) RUN IP LO VALUE

GOTO

Figure 86 RUN DIP (T31) - block diagram

17.9.1 318)RUN IP HI VALUE

Set the level of the value selected by a high RUN input.

PIN	Parameter description	Range	Default
318	RUN INPUT HIGH VALUE	±300.00%	0.01%

R	ENTRY MENU	J LE	VEL 1
	CONFIGURAT	TION	2
	DIGITAL IN	IPUTS	3
	RUN IP SET	TUP	4
	_318)RUN	IP HI	VALUE

17.9.2 319)RUN IP LO VALUE

Set the level of the value selected by a low RUN input.

PIN	Parameter description	Range			Default	:	
319	RUN INPUT LOW VALUE	±300.00%			0.00%		
			R	ENTRY	MENU	LEVEL	1
				CONFIG	URATION		2
				DIGITA	L INPUT	в	3
				RUN IP	SETUP		4
				_319	RUN IP	lo valui	Ε

17.9.3 GOTO

Set the target PIN for the connection from RUN IP.

Parameter description	Range	Default		
GOTO	PIN 000 to 720	308>INTERNA	L RUN IP	
	R ENTRY MENU L CONFIGURATION			1
				2
		DIGITAL INPUTS	;	3
		RUN IP SETUP		4
		GOTO		

17.10 CONFIGURATION / DIGITAL IN/OUTPUTS

There are four digital input/outputs, DIO1/2/3/4, located on terminals T18/19/20/21.

Parameter	DIO1	DIO2	DIO3	DIO4
OP MODE	271	277	283	289
RECTIFY EN	272	278	284	290
THRESHOLD	273	279	285	291
INVERT MODE	274	280	286	292
IP HI VALUE	275	281	287	293
IP LO VALUE	276	282	288	294

R	E	NTRY M	ENU	LEVEL	1
	C	ONFIGU	RATION		2
	D	IGITAL	IN/OU	TPUTS	3
		DIO1	(T18)	SETUP	4
		DI02	(T19)	SETUP	4
		DIO3	(T20)	SETUP	4
		DI04	(T21)	SETUP	4

The digital output function connects to the terminal via a diode, shown in the block diagram. If required, you can take the terminal HIGH when the output mode is selected.

NOTE: To implement a DIOX OP MODE change, the PL/X must be in the stopped condition.

17.11 CONFIGURATION / DIGITAL IN/OUTPUTS / DIO1/2/3/4

There are four digital input/outputs, DIO1/2/3/4, located on terminals T18/19/20/21. This description shows only the PINs for DIO1.

- By selecting DISABLED in 271) DIO OP MODE, the output switch is permanently open, and the terminal behaves as a digital input only. You can still use the digital output processing function internally even though the output switch is open.
- By selecting ENABLED in 271>DIO OP MODE, the output switch is permanently closed, and the terminal behaves as a digital output. The input function still operates, and you can use this to monitor the terminal state at any time. Refer to "7.6 Control wiring connections" on page 61 and "12.6.2 163) DIP 12341234 DIO" on page 218.
- R ENTRY MENU LEVEL 1 CONFIGURATION 2 DIGITAL IN/OUTPUTS 3 DIO1 (T18) SETUP 4 271)DI01 OP MODE 272)DI01 RECTIFY EN 273)DI01 THRESHOLD 274)DI01 INVERT MODE GET FROM GOTO 275)DIO1 IP HI VALUE 276)DI01 IP LO VALUE

17.11.1 271)DIO1 OP MODE

Enable/disable the output mode operation of the DIO1 terminal.

PIN	Parameter description	Range		Default	t	
271	DIO1 OUTPUT MODE	DISABLED ENABLED		DISABLED		
NOTE: The input function senses the terminal logic level irrespective of the output mode selection.		ogic level	R ENTRY I	MENU	LEVEL	1
			CONFIG	URATION		2
			DIGITA	L IN/OU	TPUTS	3
			DI01 C	T18) SE	TUP	4
			_2713	DIO1 O	P MODE	

17.11.2 272)DIO1 RECTIFY EN

Enable/disable the rectified mode for DIO1 OP.

PIN	Parameter description	Range			Defaul	t	
272	DIO1 RECTIFY ENABLE	DISABLED ENABLED			ENABLE	ED	
ENABL	ED = Rectified DISABLED = Bipolar		R	ENTRY	MENU	LEVEL	1
The comparison of an internal linear or logic signal w a threshold generates the digital output, for example linear speed feedback.		gnal with		CONFIG	URATION	I	2
		ampie,		DIGITA	L IN∕OU	ITPUTS	3
The red	ctified mode will enable the digital outpu	t to		DIO1 (T18> SE	TUP	4
change state at a chosen speed for both direction rotation.		ons of		_272	DIO1 R	ECTIFY E	:N
The bip	oolar mode will enable the digital output	to					

change state at just one chosen point in the whole range of positive or negative rotation.

17.11.3 273)DIO1 THRESHOLD

Set the comparator threshold for DIO1 OP.

PIN	Parameter description	Range		Default		
273	DIO1 THRESHOLD	±300.00%		0.00%		
The ou signal thresh inputs. the thr	tput of the comparator will be high when from the rectifier mode function exceeds old. The comparator output is low for ide For comparing logic values, always put (eshold window.	n the _R s the entical 0.00% in	ENTRY I CONFIG	1ENU JRATION _ IN/OU [18] SE	LEVEL	1 2 3
			273)	DI01 TH	IRESHOLD	•

17.11.4 274) DIO1 INVERT MODE

Invert/non-invert the logic for DIO1.

PIN	Parameter description	Range	Default
274	DIO1 INVERT MODE	INVERT NON-INVERT	NON-INVERT

R	ENTRY	MENU	LEVE	L 1
	CONFI	GURATIO	N	2
	DIGIT	AL IN∕O	UTPUTS	3
	DI01	(T18) S	ETUP	4
	_274	DIO1	INVERT	MODE

17.11.5 GET FROM

Set the source PIN for connection to DIO1.

	Parameter description	Range	Default		
	GET FROM	PIN 000 to 720	400)Block D	isconnect	t
This pa butput 'Figure 346. It by the to the t br LOW mode f through 24 V I	rameter provides the connection from t source block - refer to the GET FROM sh 87 DIO1 Digital IO - block diagram" on may be a linear or logic value. After prov rectifier function, the PL/X compares the threshold. The comparator output state <i>i</i> is then inverted or not inverted by the i function. It then proceeds to the output th the digital output enable switch, and b logic signal. It is also available for intern-	he digital _R own in page cessing value HIGH inverter stage, ecomes al	ENTRY MENU CONFIGURATION DIGITAL IN/OL DIO1 (T18) SE GET FROM	LEVEL I ITPUTS ITUP	1 2 3 4

Refer to "7.6.1 About digital inputs" on page 62 and "7.6.2 About digital outputs" on page 63.

17.11.6 GOTO

Set the destination PIN for connection from DIO1.

	Parameter description	Range	Default	
	GOTO	PIN 000 to 720	Refer to table opposite	
This pa	rameter is the connection for the digital	input R	ENTRY MENU LEVEL	1
shown	in "Figure 87 DIO1 Digital IO - block diag	gram" on	CONFIGURATION	2
page 34	46.		DIGITAL IN/OUTPUTS	3
Enter the values for LO VAL and HI VAL using the display			DIO1 (T18) SETUP	4
and key connec	ys. To switch dynamically changing value t them using jumpers to the LO/HI value	s, PINS.	GOTO	

For logic-only usage:

- A value of 0.00% reads as a LOW
- Any nonzero value reads as HIGH

Invert the logic by entering:

0.00% in the HI VAL parameter and 0.01% in the LO VAL parameter.

17.11.7 275)DIO1 IP HI VALUE

Set the level of the value selected by a high DIO1 input.

PIN	Parameter description	Range			Defaul	t	
275	DIO1 INPUT HIGH VALUE	±300.00%			0.01%		
Refer t GOTO	o "17.11.6 GOTO" on page 349 - make ir destination connection.	nput	R	ENTRY CONFIG DIGITA DIO1 <	MENU URATION L IN/OU T18) SE	LEVEL TPUTS TUP	. 1 2 3 4

17.11.8 276) DIO1 IP LO VALUE

Set the level of the value selected by a low DIO1 input.

PIN	Parameter description	Range	Default
276	DIO1 INPUT LOW VALUE	±300.00%	0.01%

Refer to "17.11.6 GOTO" on page 349 - make input GOTO destination connection.

NOTE: You can make a simple OR gate by selecting this as the target PIN of a logical GOTO.

17.11.9 Hidden PINs 685/686/687/688

685)DI01 0 / P BIN VAL 686)DI02 0 / P BIN VAL 687) DI03 0 / P BIN VAL 688) DI04 0 Z P BIN VAL

There is a hidden PIN for each block to enable the internal connection of the output processing part of the block. This section of the block will continue to function irrespective of the output mode.

R	ENTRY MENU LEVEL	1
	CONFIGURATION	2
	DIGITAL IN/OUTPUTS	3
	DI01 (T18) SETUP	4
	276)DI01 IP LO VALU	JE

DIOX	Terminal	Function	High value	Low value	Default connection PIN
DIO1	T18	Zero reference interlock	0.01% (High)	0.00% (Low)	116)ZERO REF START
DIO2	T19	Jog Mode select	0.01% (High)	0.00% (Low)	42) JOG MODE SELECT
DIO3	T20	Ramp Hold	0.01% (High)	0.00% (Low)	33)RAMP HOLD
DIO4	T21	Dual current clamp enable	0.01% (High)	0.00% (Low)	88) DUAL I CLAMP ENBL

17.12 CONFIGURATION / DIGITAL OUTPUTS

There are three digital outputs, DOP1/2/3, located on terminals T22/23/24.

Parameter	DOP1	DOP2	DOP3	
RECTIFY EN	261	264	267	
THRESHOLD	262	265	268	
INVERT MODE	263	266	269	

R	E	NTRY M	ENU	LEVEL	1
	С	ONFIGU	RATION		2
	D	IGITAL	OUTPU	TS	3
		DOP1	(T22)	SETUP	4
		DOP2	(T23)	SETUP	4
		D0P3	(T24)	SETUP	4

Refer to "7.6 Control wiring connections" on page 61 (DOP3 may be used to control external serial link converters.)

17.13 CONFIGURATION / DIGITAL OUTPUTS / DOP1/2/3

There are three identical digital outputs, DOP1/2/3. This description shows only the PINs for DOP 1.

R	E	NTRY	MENU	LEVEL	_ 1
	C	DNFI	GURAT	ION	2
	D	IGIT	AL OU	TPUTS	3
	D	DP1	(T22)	SETUP	4
		_26:	DOP	RECTIFY	' EN
		_262	2>DOP1	I THRESHO	ILD
		263	3>DOP1	INVERT	MODE
		GE.	r froi	1	

Figure 88 DOP1 (T22) Zero Speed - block diagram

17.13.1 261) DOP1 RECTIFY EN

Enable/disable the rectified mode for DOP1 OP.

PIN	Parameter description	Range	Default
261	DOP1 RECTIFY ENABLE	DISABLED ENABLED	DISABLED

ENABLED = Rectified. DISABLED = Bipolar.

An internal linear or logic signal is compared with a threshold to generate the digital output, for example, Linear speed feedback.

The rectified mode will enable the digital output to change state at a chosen speed for both directions of rotation.

The bipolar mode will enable the digital output to change state at just one chosen point in the whole range of positive or negative rotation.

R	E	NTRY	MENU	LEVEL	1
	C	ONFI	GURATI	ON	2
	D	IGITA	AL IN∕	OUTPUTS	3
	D	OP1	(T22)	SETUP	4
		261	>DOP1	RECTIFY	EN

17.13.2 262) DOP1 THRESHOLD

Set the comparator threshold for DOP1 OP.

PIN	Parameter description	Range			Default	1	
263	DOP1 THRESHOLD	±300.00%			0.00%		
The ou signal thresh inputs the thr	tput of the comparator will be high whe from the rectifier mode function exceed old. The comparator output is low for ide . For comparing logic values, always put eshold window.	n the s the entical 0.00% in	R	ENTRY CONFIG DIGITA DOP1 (MENU JURATION IL IN/OU T22) SE	LEVEL TPUTS TUP	1 2 3 4

17.13.3 263)DOP1 INVERT MODE

Invert/non-invert the logic for DOP1.

PIN	Parameter description	Range	Default
263	DOP1 INVERT MODE	INVERT NON-INVERT	NON-INVERT

R	E	NTRY	MENU	LEVE	L 1
	C	DNFI	GURATI	ON	2
	D	IGITI	AL IN∕	OUTPUTS	3
	D	OP1	(T22)	SETUP	4
		263	5)DOP1	INVERT	MODE

LEVEL

1

2

3

4

R ENTRY MENU

CONFIGURATION

DIGITAL IN/OUTPUTS

DOP1 (T22) SETUP

GET FROM

17.13.4 GET FROM

Set the source PIN for connection to DOP1.

Parameter description	Range	Default
GET FROM	PIN 000 to 720	400)Block Disconnect

This parameter provides the connection from the digital output source block - refer to GET FROM shown in "Figure 88 DOP1 (T22) Zero Speed - block diagram" on page 351. It may be a linear or logical value. After processing by the rectifier function, the PL/X compares the amount to the threshold. The comparator output state HIGH or LOW is then inverted or not inverted by the inverter mode function. It then becomes a 24 V logic signal. For comparing logic values, always put 0.00% in the Threshold window. The comparator output is low for identical inputs.

17.13.4.1 Hidden PINs 682/683/684

682)D0P1 0 / P BIN VAL 683)D0P2 0 / P BIN VAL 684)D0P3 0 / P BIN VAL

The binary result of these outputs is available for internal use on the hidden pins.

17.13.4.2 Default connections for DOP1/2/3

DOPX	Terminal	Function	Threshold	GET FROM source	GET FROM PIN
DOP1	T22	Zero speed	0.00% (Low)	Zero speed	120)AT ZERO SPD FLAG
DOP2	T23	Ramping flag	0.00% (Low)	Ramping flag	35)RAMPING FLAG
DOP3	T24	Drive healthy	0.00% (Low)	Drive healthy	698)HEALTHY FLAG

17.14 CONFIGURATION / STAGING POSTS

There are four digital posts and four analog posts, acting like virtual wire-wrap posts. This description shows only the PINs for POST 1.

R

Each post has a PIN and can contain a value or act as a constant for setting a value.

They store data when receiving values via a serial link. You can then connect them to the desired destinations.

Blocks in the Applications menu are usually dormant. You activate a block by connecting its output to a PIN destination other than 400)Block Disconnect. However, you can also activate a block by connection to a staging post which is of great use during system commissioning to examine a block's output before inclusion into the system. You can then monitor it via the display, and if required, connect it to an analog output terminal using the terminal's GET FROM link to allow monitoring with an oscilloscope. Refer to "17.5.2 260)SCOPE OP SELECT" on page 336. When satisfied with the output functionality, you can then connect it to the final system destination.

Use the analog posts for linear or logic values.

Use the digital posts for logic values:

- A zero value is a logic low
- A nonzero value is a logic high

NOTE: Also, use staging posts for making connections between a GOTO and a GETFROM.

NOTE: Any unused settable PIN may perform the function of a staging post. For example, the PRESET SPEED application block contains a convenient cluster of 8 PINs.

17.14.1 Connecting PINs with different units

Connecting PINS having different units and scaling ranges causes no problems because blocks are processed using an internal system of pure numbers. For example, the output of the analog input terminal using "%" can connect to the ramp parameter called FORWARD UP TIME using "seconds".

The internal pure number range is a five-digit number equal to ±32,000. All linear parameters work with numbers that lie within this range.

ENTRY MENU LEVEL	1
CONFIGURATION	2
STAGING POSTS	3
296>DIGITAL POST 1	
297>DIGITAL POST 2	
298)DIGITAL POST 3	
299>DIGITAL POST 4	
300>ANALOG POST 1	
301)ANALOG POST 2	
302)ANALOG POST 3	
303)ANALOG POST 4	

17.14.1.1 Connecting linear values with different units

To find the pure number, remove the decimal point and the units, for example:

0.1 = 15.00% = 500200.00 = 20000

60) Drop-out. DELAY range 0.1 to 600.0 seconds. In this case, the pure number range is 1 to 6000.

59) Drop-out. SPEED range 0.00 to 100.00%. In this case, the pure number range is 0 to 10000.

It is the pure number that transfers from the output to the input during processing. If the pure number arriving at the target PIN extends outside the range of that PIN, then it is automatically clamped to the maximum limit of the target PIN.

For example, VOLTS to SECONDS:

129) TACHO VOLTS MON = 190.00 V (pure number = 19000) is connected to **24) REVERSE UP TIME** which has a range of 0.1 to 600.0 s (pure number = 6000). The pure number of 19000 is now clamped to 6000 and displayed as 600.0 s.

17.14.1.2 Connecting logic values with different messages

In the system, several parameters have only two states, and some have more than two. For example:

64)SPD/CUR REF 3 SIGN	INVERT NON-INVERT	State 0 State 1	2 states
29)RAMP AUTO PRESET	ENABLED DISABLED	State 0 State 1	2 states
9)SPEED FBK TYPE	ARMATURE VOLTAGE TACHOGENERATOR ENCODER ENCODER + AVF ENCODER + TACHO	State 0 State 1 State 2 State 3 State 4	5 states

When using two-state logic parameters, the system sees one state as a "1" and the other as a "0", according to the following table:

LOGIC 1 PARAMETER	LOGIC 0 PARAMETER
HIGH	LOW
ENABLED	DISABLED
MOTOR 2	MOTOR 1
INVERT	NON-INVERT
Nonzero in logic statement	Zero value in logic statement

If the value from a PIN uses a binary or hexadecimal string (for example, digital IO monitor), then the pure decimal equivalent is used. When calculating the decimal equivalent, the most significant bit is on the right and the least significant on the left.

17.14.1.3 Connecting to multi-state logic parameters

When connecting to multi-state logic parameters (e.g. SPEED FBK TYPE or UIPX RANGE), the states are placed in numerical order as follows:

1st Type = value of pure number 0 2nd Type = value of pure number 1 3rd Type = value of pure number 2 4th Type = value of pure number 3 5th Type = value of pure number 4

(where "Type" above is an available selection for the parameter).

- To switch between, say, Type 4 (value of pure number 3) and Type 5 (value of pure number 4), use 0.03% for LOW and 0.04% for HIGH.
- You can connect a normal logic flag as the control source to switch between Type 1 (value of pure number 0) and Type 2 (value of pure number 1). Note: If the block providing the instruction to change state possesses a value for HIGH/LOW output, (e.g. digital input DIP1), ensure that a LOW is 0.00% value. and a HIGH is 0.01% value.
- You can use one of the C/O SWITCHES if the source of the logic state is internal and does not possess a value for HIGH/LOW. Refer to the "16.15 APPLICATION BLOCKS / C/O SWITCH 1 TO 4" on page 318. For example, the C/O SWITCH uses a logic value to switch between a HIGH and LOW value input:
 - Thus when the logic value is 0, the C/O SWITCH sends the value of pure number 3 to the multistate PIN, selecting Type 4.
 - Likewise, when the logic value is 1, the C/O SWITCH sends the value of pure number 4 to the multi-state PIN, selecting Type 5.

17.14.2 296)DIGITAL POST 1

A storage PIN for a logic state and/or connecting point.

PIN	Parameter description	Range		Default		
296	DIGITAL POST 1	LOW HIGH		LOW		
When a pure logic value of 0 arrives at a DIGITAL POST, R the display shows LOW; when a pure logic value of 1 arrives, the display shows HIGH.		AL POST, _R e of 1	ENTRY CONFIG	MENU URATION	LEVEL	1
		STAGIN	G POSTS		3	
		_2963	DIGITAL	. POST :	L	

17.14.3 300)ANALOG POST 1

A storage PIN for a linear value or logic state.

PIN	Parameter description	Range	Default
300	ANALOG POST 1	±300.00%	0.00%

R	ENTRY	MENU	LEVEL	1
	CONFIG	GURATION		2
	STAGI	IG POSTS		3

300)ANALOG POST 1

17.15 CONFIGURATION / SOFTWARE TERMINALS

The three drive control functions (RUN, JOG, START) are ANDed with their respective hardware equivalent input terminals. The resulting output controls the drive.

It allows a remote command to override the local terminal function or a local terminal to override a remote command.

R ENTRY MENU LEVEL 1 CONFIGURATION 2 SOFTWARE TERMINALS 3 305) ANDED RUN 306)ANDED JOG 307)ANDED START 308) INTERNAL RUN IP

17.15.1 305)ANDED RUN

Set a logic input to an internal AND gate to control RUN.

PIN	Parameter description	Range		D	efault		
305	ANDED RUN	LOW HIGH		Н	IGH		
A serial link might typically use 305 ANDED RUN control the drive.		N to	RENTR	y mei	NU	LEVEL	1
NOTE	If using the RLIN terminal as a general d	igital	CONF	IGUR	ATION		2
input, then 308) INTERNAL RUN IP must be se		t HIGH	SOFT	WARE	JARE TERMINALS		3
for the	for the drive to run.		_3	95)AH	NDED R	NUN	

17.15.2 306)ANDED JOG

Set a logic input to an internal AND gate to control JOG.

PIN	Parameter description	Range		Default		
306	ANDED JOG	LOW HIGH		HIGH		
A seria contro	I link might typically use 306>ANDED JO I the drive.	Gito _R	ENTRY I CONFIG SOFTWA	MENU URATION RE TERMI ANDED J	LEVEL INALS	1 2 3

17.15.3 307)ANDED START

Set a logic input to an internal AND gate to control START.

PIN	Parameter description	Range	Default
307	ANDED START	LOW HIGH	HIGH

A serial link might typically use **307>ANDED START** to control the drive.

R	ENTRY	MENU	LEVEL	1
	CONFI	GURATIO	N	2
	SOFTW	ARE TER	MINALS	3
	307	?)ANDED	START	

17.15.4 308)INTERNAL RUN IP

Set the RUN mode if the RUN terminal is reprogrammed.

PIN	Parameter description	Range		Default		
308	INTERNAL RUN INPUT	LOW HIGH		LOW		
The RUN command usually comes from the default RUN terminal (T31), and this parameter will show the state of T31.			ENTRY CONFIG	MENU URATION	LEVEL	1
You ca termin discon termin	n also use this terminal as a programma al if short of digital inputs. In this case, nect 308)INTERNAL RUN IP from the RUI al and set this parameter HIGH to allow	ble N the PL/X	SOFTWA	RE TERMI DINTERNA	inals I RUN	3 IP

to run.

17.16 CONFIGURATION / JUMPER CONNECTIONS

There are sixteen uncommitted JUMPER CONNECTIONS blocks, and this menu defines their JUMPER connection PINS by using GET FROMs and GOTOs. This description shows only the PINs for JUMPER 1.

CONFIGURATION 2 JUMPER CONNECTIONS 3 JUMPER 1 4 JUMPER 2 4 TUMPER 3 4
JUMPER CONNECTIONS 3 JUMPER 1 4 JUMPER 2 4 TUMPER 3 4
JUMPER 1 4 JUMPER 2 4
JUMPER 2 4
JOHIEK J 4
JUMPER X 4
JUMPER 16 4

17.16.1 GET FROM

Set the source PIN for connection to JUMPER 1.

Parameter description	Range	Defaul	t		
GET FROM	PIN 000 to 720	400)B1	lock Dis	sconnec	t
	R	ENTRY ME	NU L	EVEL	1
		CONFIGUR	ATION		2
		JUMPER C	ONNECTI	ONS	3
		JUMPER 1			4
			ROM		

17.16.2 GOTO

Set the destination PIN for connection from JUMPER 1.

Parameter description	Range	Defa	ault		
GOTO	PIN 000 to 720	400)	Block [Disconnec	t
	R	ENTRY I	MENU	LEVEL	1
		CONFIG	URATION	I	2
		JUMPER	CONNEC	TIONS	3
		JUMPER	1		4
		GOTO	D		

17.17 CONFIGURATION / BLOCK OP CONFIG

Use this menu to connect the Application Block diagrams.

This Block Output Configuration menu conveniently displays just the GOTO connections of many Application Block diagrams.

Connecting the GOTO to a PIN other than **400**>**Block Disconnect** causes activation of the block.

You can access all the GET FROMs from within their block menus.

17.17.1 Other GOTOs

The following GOTO connections, not in this menu, are only found in their block menus:

Input/output terminals Multi-function blocks 1-8 Jumpers Comparators C/O switches R ENTRY MENU LEVEL 1 CONFIGURATION 2 BLOCK OP CONFIG 3 RUN MODE RAMPS GOTO MOTORISED POT GOTO REF EXCH SLAVE GOTO SUMMER1 GOTO SUMMER2 GOTO PID1 GOTO PID2 GOTO PARAMETER PROFL GOTO DIAMETER CALC GOTO TAPER CALC GOTO T/COMP +CUR LIM GOTO T/COMP -CUR LIM GOTO PRESET SPEED GOTO LATCH GOTO FILTER1 GOTO FILTER2 GOTO BATCH COUNTER GOTO INTERVAL TIMER GOTO

17.17.2 GOTO

Set the destination PIN for connection from the block output.

	Parameter description	Range	Default
	GOTO	PIN 000 to 720	400)Block Disconnect
Select make t	a PIN other than 400>Block Disconne the GOTO connection.	ect to R	ENTRY MENU LEVEL 1 CONFIGURATION 2 BLOCK OP CONFIG 3 (description) GOTO

17.18 CONFIGURATION / FIELDBUS CONFIG

Use this menu to select parameters for transmitting to or receiving from the host drive using, for example, PROFIBUS protocol.

R

Refer to the FIELDBUS manual, HG105409EN00.

ENTRY MENU LEVEL	1
CONFIGURATION	2
FIELDBUS CONFIG	3
JUMPER 1	4
JUMPER 2	4
JUMPER 3	4
JUMPER 4	4
JUMPER 5	4
JUMPER 6	4
JUMPER 7	4
JUMPER 8	4
BIT-PACKED GETFROM	
JUMPER 9	4
JUMPER 10	4
JUMPER 11	4
JUMPER 12	4
JUMPER 13	4
JUMPER 14	4
JUMPER 15	4
JUMPER 16	4
_BIT-PACKED GOTO	
199)FBUS DATA CONT	RL
202)FBUS NODE ID	
224)FBUS BAUD RATE	:

17.19 CONFIGURATION / DRIVE PERSONALITY

Use this menu to modify or monitor various aspects of the PL/X personality.

- PASSIVE MOTOR SET contains all the parameters in ascending PIN order to set the passive reduced values for motor 1 or 2.
- **RECIPE PAGE** sets the target page for a PARAMETER SAVE operation. There are three separate pages that each allow a total instrument to be stored. To recall any page requires the appropriate power up-reset choice.
- MAX CUR RESPONSE allows for an improved smallsignal current response.
- Suppliers of the PL/X use ID ABCXRxxx MON to identify the power chassis. It has no other purpose. A binary code is displayed.
- I arm BURDEN OHMS is used along with the physical burden to determine and possibly derate the model armature current.

17.19.1 677) RECIPE PAGE

et the Recipe page for the PARAMETER SAVE function.						
PIN	Parameter description	Range	Default			
677	RECIPE PAGE	NORMAL RESET 2-KEY RESET 3-KEY RESET 4-KEY RESET	NORMAL RESET			

Save a Recipe in the NORMAL page to make it permanently operative. Recalling any page requires the appropriate power-up reset choice (pressing keys during the application of the Control supply).

NOTE: During a power-off sequence, the drive stores parameters and saves them to the selected page.

- This parameter signs any parameter(s) sent using drive transmit so that the parameter(s) return to the correct Recipe page.
- The parameter shows the current Recipe in force.
- R ENTRY MENU LEVEL 1 CONFIGURATION 2 DRIVE PERSONALITY 3 677)RECIPE PAGE

R ENTRY MENU

CONFIGURATION

DRIVE PERSONALITY

PASSIVE MOTOR SET

678)MAX CUR RESPONSE

679) ID ABCXRxxx MON

680) Iarm BURDEN OHMS

677)RECIPE PAGE

LEVEL

1

2

3

4

A Recipe (backed-up configuration) created in the legacy Pilot configuration tool is not (necessarily) the same as one of the three Recipe pages described here.

Selected Page / (type of power-up)	SOURCE page	Destination for Save Operations
NORMAL RESET / (no keys)	NORMAL page	PARAMETER SAVE overwrites NORMAL page
2-KEY RESET / (UP/DOWN keys)	Page 2	PARAMETER SAVE overwrites Page 2
3-KEY RESET / (UP/DOWN/RIGHT keys)	Page 3	PARAMETER SAVE overwrites Page 3
4-KEY ROM RESET / (all 4 keys)	Factory Defaults	PARAMETER SAVE overwrites NORMAL page

To install a Recipe

- 1. Remove power from the drive.
- 2. Press and hold the required key combination, now reapply the control supply to the PL/X.
- 3. The PL/X displays LEFT KEY TO RESTART on the HMI.
- 4. Press the LEFT key within 15 seconds to install your selected Recipe. (The PL/X will revert to the NORMAL page if this operation times out.)
- To store the Recipe, perform a PARAMETER SAVE. This Recipe will be in use next time the PL/X is powered up. 677>RECIPE PAGE displays the name of this Recipe.

NOTE: If AUTHORISATION

NEEDED is displayed when SAVING, it means that the page is LOCKED and is read-only. Refer to your supplier or system integrator. The page's Recipe may not allow for it to be overwritten. Each page may have an individual password, but be aware it is possible to overwrite the password when saving parameters from a different Recipe page. For this reason, we recommend using the same password for each page.

Figure 89 Recipe Page - functional diagram

17.19.2 678) MAX CUR RESPONSE

Enable to activate an improved small-signal current response.

PIN	Parameter description	Range	Default
678	MAXIMUM CURRENT RESPONSE	DISABLED ENABLED	DISABLED

When ENABLED:

 You can adjust the internally adjusted current loop algorithm to provide a reduced dead band when switching bridges. Refer to the supplier. Set the speed and current control terms carefully for optimum performance, or else current overshoots or noisy feedback signals may cause instability.

When DISABLED:

 The current response is similar to a standard performance DC drive, which in most cases is acceptable; also, the PL/X is more tolerant of poor feedback/control term settings. R ENTRY MENU LEVEL 1
CONFIGURATION 2

DRIVE PERSONALITY 3

678)MAX CUR RESPONSE

17.19.3 680) Iarm BURDEN OHMS

Set this value to be the same as the physical burden resistance value.

PIN	Parameter description	Range	Default		
680	ARMATURE CURRENT BURDEN OHMS	0.00 to 320.00	According to	MODEL	
R			ENTRY MENU	LEVEL	1
			CONFIGURATIO	N	2
			DRIVE PERSON	ALITY	3
			680)Iarm H	BURDEN OH	MS

WARNING! PERSONAL INJURY HAZARD EQUIPMENT DAMAGE HAZARD

It is important that parameter **680**) I arm BURDEN OHMS is set as closely as possible to the actual resistance in use on the power board. Do not allow the model's current rating to exceed the value stated in the rating table and on the product label found on the side of the drive. Failure to heed this warning will invalidate any Warranty and violate approval standards. The manufacturer and distributor accept no liability for faults caused by re-rating of the product.

17.19.3.1 Frames 1 - 3 (PL/X5 - PL/X265)

Figure 90 Burden and jumper selections for Frames 1 - 3 (PL/X5 - PL/X265)

The burden resistors are on the lower edge of the power board, to the right of the 8-way terminal block.

(R100//R101 100% parallel back pair) or (R102//R103 50% parallel front pair) selected by iumper.

Formula for PL/X 5 - 145:

Combined value of BURDEN OHMS = 2000/maximum model Amps

Formula for PL/X 185 - 225:

Combined value of BURDEN OHMS = 4000/maximum model Amps

To apply changes made to parameter 680) I arm BURDEN OHMS:

- Save the new value by performing a **PARAMETER SAVE**. 1.
- 2. Turn the PL/X control supply off, then back on again.
- 3. Adjust parameter 2>RATED ARM AMPS in the CALIBRATION menu:
 - 1. Adjust it to its maximum setting (100%).
 - 2. Adjust it to its minimum setting (33%) (Note that the values are 100% Amps and 33% Amps of new ratings with changed burden).
 - 3. Adjust it to the desired value for your motor.
- Save the new value by performing a **PARAMETER SAVE**. 4.

17.19.3.2 Frame 4 (PL/X275 - PL/X440)

Figure 91 Burden and jumper selections for Frame 4 (PL/X275 - PL/X440)

The burden resistors are on the lower edge of the power board, to the right of the 8-way terminal block.

Solderable links connect R1, R2, R3, R4, R77 and R78 into circuit depending on drive model.

On-board resistances R104 (100%) or R102 (50%) are selected by jumper.

Formula for PL/X 275 - 440:

Combined value of BURDEN OHMS = 4000/maximum model Amps

To apply changes made to parameter 680) I arm BURDEN OHMS:

- 1. Save the new value by performing a **PARAMETER SAVE**.
- 2. Turn the PL/X control supply off, then back on again.
- 3. Adjust parameter 2>RATED ARM AMPS in the CALIBRATION menu:
 - 1. Adjust it to its maximum setting (100%).
 - 2. Adjust it to its minimum setting (33%) (Note that the values are 100% Amps and 33% Amps of new ratings with changed burden).
 - 3. Adjust it to the desired value for your motor.
- Save the new value by performing a **PARAMETER SAVE**. 4.

17.19.3.3 Frame 5 (PL/X520 - PL/X980)

solderable links

Figure 92 Burden and jumper selections for Frame 5 (PL/X520 - PL/X980)

The burden resistors are on the lower edge of the power board, to the right of the 8-way terminal block.

Solderable links connect R1, R2, R3, R5, R6, R77, R167, R168, R169 and R170 into circuit depending on drive model.

On-board resistances are selected by jumper.

Formula for PL/X 520 - 980:

Combined value of BURDEN OHMS = 4000/maximum model Amps

To apply changes made to parameter 680) I arm BURDEN OHMS:

- 1. Save the new value by performing a **PARAMETER SAVE**.
- 2. Turn the PL/X control supply off, then back on again.
- 3. Adjust parameter 2)RATED ARM AMPS in the CALIBRATION menu:
 - 1. Adjust it to its maximum setting (100%).
 - 2. Adjust it to its minimum setting (33%) (Note that the values are 100% Amps and 33% Amps of new ratings with changed burden).
 - 3. Adjust it to the desired value for your motor.
- 4. Save the new value by performing a **PARAMETER SAVE**.

17.19.3.3.1 Jumper selections (50% / 100% rating)

Model JUMPER MODE 1 (left-hand position)		JUMPER MODE 2 (right-hand position)	JUMPER MODE 3 (parked position)	
PL/X 5-50	50% of maximum model rating	100% of maximum model rating	6 A maximum 330R	
PL/X 65-145	50% of maximum model rating	100% of maximum model rating	24 A maximum 82R	
PL/X 185-265	50% of maximum model rating	100% of maximum model rating	24 A maximum 150R	
PL/X 275-440	50% of maximum model rating	100% of maximum model rating	36 A maximum 110R	
PL/X520-980	50% of maximum model rating	100% of maximum model rating	36 A maximum 110R	

The burden resistors **and** a selection jumper are on the power board offering JUMPER MODES 1, 2 and 3.

The left-hand position of the jumper, JUMPER MODE 1, sets the actual burden resistance to twice the standard value and hence reduces the model rating to 50%. (Higher burden values give lower model ratings).

Using this with DRIVE PERSONALITY < 680) Iarm BURDEN OHMS provides a 6 - 1 calibration range.

Parking the jumper on one pin, IUMPER MODE 3, causes the actual burden resistance to be high. You can use this to test small motors without changing the actual burden resistor value. Refer also to "1.4 Testing using a small motor" on page 5.

NOTE: When using the parked position for small test motors, you may choose to set CONFIGURATION / DRIVE PERSONALITY / 680) Larm BURDEN OHMS to the parked value or leave it at the prevailing model rating.

- If you set it to the parked value, the armature current calibration range of the PL/X will reflect the parked position for small motors.
- If you leave it set to the prevailing model rating, the PL/X parameters will assume the normal full ratings despite the scaling (to the parked position range for small motors) of the actual current. Doing this is useful when the configuration involves armature current related parameters that require testing at full value, even though only a low current is flowing.

For example, calibrate the PLX50 for 110 A: Park the jumper. Use a 6 A motor to test the PL/X without altering 680) Iarm BURDEN OHMS. At 100% current, 6 A will be flowing in the armature, but 110 A will display on 135) ARM CUR AMPS MON.

Refer to "17.19.3 680) Iarm BURDEN OHMS" on page 365 for burden formula.

Measuring burden resistance:

Frames 1 - 3:

To measure the actual burden resistance connect an ohmmeter between the pad marked **I** and the right-hand end of the front resistor (R103) **0 V**.

Frame 4:

To measure the actual burden resistance connect an ohmmeter between the pad marked I and common, OV.

Frame 5:

To measure the actual burden resistance connect an ohmmeter between the pad marked I and common, 0 V.

Drive Type	Curre	680) Ianm BURDEN OHMS and measured burden resistance (Ohms)			
	R100	R101	R102	R103	
PL/X5	680	680	not fitted	10K5	166.66
PL/X10	220	220	680	680	83.33
PL/X15	66.5		332	332	55.55
* PL/X15	68	3K3	332	332	55.55
PL/X20	88.7	88.7	205	205	39.21
PL/X30	60.4	60.4	not fitted	66.5	27.77
* PL/X30	60.4	60.4	3K3	68	27.77
PL/X40	43	43	not fitted	46.4	20.20
PL/X50	34	34	not fitted	36	16.26
PL/X65	30.1	30.1	not fitted	37.4	12.90
PL/X85	22.1	22.1	51.1	51.1	9.75
PL/X115	16.2	16.2	36	36	7.40
PL/X145	13	13	28	28	6.06
PL/X185	19.6	19.6	42.2	42.2	9.30
PL/X225	15.8	15.8	33.2	33.2	7.54
PL265	13.3	13.3	27.4	27.4	6.34

* Alternative values for when 66.5 Ohm resistors are not available.

Figure 93 Burden resistor values for frames 1 - 3 with jumper selection

Drive Type		Burde	680) Iarm BURDEN OHMS and measured burden resistance (Ohms)			
	R1/R5	R2/R6	R3/R77	R4/R78		
PL/X275	×	×	×	×		6.15
PL/X315	✓	×	×	×		5.33
PL/X360	✓	✓	×	×		4.71
PL/X400	✓	✓	✓	×		4.21
PL/X440	✓	✓	✓	✓		3.80
	R1/R5	R2/R6	R3/R77	R167/R168	R169/R170	
PL/X520	×	×	×	×	×	3.20
PL/X600	✓	×	×	×	×	2.76
PL/X700	✓	✓	×	×	×	2.42
PL/X800	✓	✓	✓	×	×	2.16
PL/X900	✓	\checkmark	✓	\checkmark	×	1.95
PL/X980	✓	✓	✓	✓	✓	1.77

Figure 94 Burden resistor values for frames 4 & 5 with solderable links selection
17.20 CONFIGURATION/DRIVE PERSONALITY/PASSIVE MOTOR SET

This menu displays the passive motor set (either MOTOR 1 or MOTOR 2). You can change the values in the passive motor set here.

For example, if MOTOR 1 is selected (as active) in **20>MOTOR 1 - 2 SELECT** (this is the default), then the parameters contained in MOTOR 2 (now passive) are stored here.

The MOTOR 1 and MOTOR 2 parameter lists are identical, except for their values which can be different.

PIN TABLE FOR PASSIVE MOTOR SET Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST						
Property	Paragraph number	Menu / Description	Range	Default Values	PIN	
R/P/S	11.1.1	CALIBRATION / Rated armature amps QuickStart	33% - 100%	33% Amps	2	
R/P	11.1.2	CALIBRATION / Current limit% QuickStart	0.00 - 150.00%	150.00%	3	
R/P/S	11.1.3	CALIBRATION / Rated field amps QuickStart	0.1 – 100.0% A	1.0 A	4	
R/P/S	11.1.4	CALIBRATION / Base rated motor rpm QuickStart	0 – 6000 rpm	1500 rpm	5	
R/P	11.1.5	CALIBRATION / Desired max rpm QuickStart	0 – 6000 rpm	1500 rpm	6	
R/P	11.1.6	CALIBRATION / Zero speed offset	±5.00%	0.00%	7	
R/P/S	11.1.7	CALIBRATION / Max tacho volts	±200.00 V	60.00 V	8	
R/P/S	11.1.8	CALIBRATION / Speed feedback type QuickStart	0 ARMATURE VOLTS 1 ANALOG TACHO 2 ENCODER 3 ENCODER + ARM VOLTS 4 ENCODER + TACHO	0	9	
R/P/S	11.2.1	ENCODER SCALING / Quadrature enable	0 DISABLED 1 ENABLED	0	10	
R/P/S	11.2.2	ENCODER SCALING / Encoder lines	1 – 6000	1000	11	
R/P/S	11.2.3	ENCODER SCALING / Motor / encoder speed ratio	0.0000 - 3.0000	1.0000	12	
R/P/S	11.2.4	ENCODER SCALING / Encoder sign	0 INVERT 1 NON-INVERT	1	13	
R/P	11.1.9	CALIBRATION / IR compensation	0.00 - 100.00%	0.00%	14	
R/P	11.1.10	CALIBRATION / Field current feedback trim	1.0000 - 1.1000	1.0000	15	
R/P	11.1.11	CALIBRATION / Armature volts trim	1.0000 - 1.1000	1.0000	16	
R/P	11.1.12	CALIBRATION / Analog tacho trim	1.0000 - 1.1000	1.0000	17	
R/P/S	11.1.13	CALIBRATION / Rated armature volts QuickStart	0.0 – 1000.0 V	460.0 V	18	
R	11.3.2	RUN MODE RAMPS / Forward up time	0.1 – 600.0 s	10.0 s	22	
R	11.3.3	RUN MODE RAMPS / Forward down time	0.1 – 600.0 s	10.0 s	23	
R	11.3.4	RUN MODE RAMPS / Reverse up time	0.1 – 600.0 s	10.0 s	24	
R	11.3.5	RUN MODE RAMPS / Reverse down time	0.1 – 600.0 s	10.0 s	25	
R	11.4.1	JOG CRAWL SLACK / Jog speed 1	±100.00%	5.00%	37	
R	11.4.2	JOG CRAWL SLACK / Jog speed 2	±100.00%	-5.00%	38	
R	11.4.3	JOG CRAWL SLACK / Slack speed 1	±100.00%	5.00%	39	
R	11.4.4	JOG CRAWL SLACK / Slack speed 2	±100.00%	5.00%	40	
R	11.4.5	JOG CRAWL SLACK / Crawl speed	±100.00%	10.00%	41	
R	11.4.6	JOG CRAWL SLACK / Jog mode select	0 LOW 1 HIGH	0	42	

PIN TABLE FOR PASSIVE MOTOR SET Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST					
Property	Paragraph number	Menu / Description	Range	Default Values	PIN
R	11.4.7	JOG CRAWL SLACK / Jog/Slack ramp	0.1 – 600.0 s	1.0 s	43
R	11.6.2	STOP MODE RAMP / Stop ramp time	0.1 – 600.0 s	10.0 s	56
R	11.6.5	STOP MODE RAMP / Drop-out speed	0 – 100.00%	2.00%	59
R	11.7.1	SPEED REF SUMMER / Internal speed reference 1	±105.00%	0.00%	62
R	11.7.2	SPEED REF SUMMER / Auxiliary speed reference 2	±105.00%	0.00%	63
R	11.7.3	SPEED REF SUMMER / Speed reference 3 monitor	±105.00%	0.00%	64
R	11.7.4	SPEED REF SUMMER / Ramped speed reference 4	±105.00%	0.00%	65
R	11.7.5	SPEED REF SUMMER / Speed/ Current reference 3 sign	0 INVERT 1 NON-INVERT	1	66
R	11.7.6	SPEED REF SUMMER / Speed/ Current reference 3 ratio	±3.0000	1.0000	67
R	11.8.1	SPEED CONTROL / Max+ speed reference	0.00 - 105.00%	105.00%	69
R	11.8.2	SPEED CONTROL / Max- speed reference	0.00105.00%	-105.00%	70
R	11.8.3	SPEED CONTROL / Speed proportional gain	0.00 - 200.00	5.00	71
R	11.8.4	SPEED CONTROL / Speed integral time constant	0.001 – 30.000 s	1.000 s	72
R	11.10.1	CURRENT CONTROL / Current clamp scaler	0.00 – 150.00%	10.00%	81
R	11.10.7	CURRENT CONTROL / Current amp proportional gain	0.00 – 200.00	5.00	93
R	11.10.8	CURRENT CONTROL / Current amp integral gain	0.00 - 200.00	1.00	94
R	11.10.9	CURRENT CONTROL / Discontinuous current point	0.00 – 200.00%	0.00%	95
R/S	11.10.10	CURRENT CONTROL / 4-quadrant mode enable	0 DISABLED 1 ENABLED	1	96
R/S	11.13.1	FIELD CONTROL / Field enable	0 DISABLED 1 ENABLED	1	99
R/P	11.13.2	FIELD CONTROL / Voltage output %	0.00 - 100.00%	90.00%	100
R	11.15.1	ZERO INTERLOCKS / Standstill enable	0 DISABLED 1 ENABLED	0	115
R	11.15.3	ZERO INTERLOCKS / Zero interlocks speed level	0.00 - 100.00%	1.00%	117
R	11.15.4	ZERO INTERLOCKS / Zero interlocks current level	0.00 - 100.00%	1.50%	118

17.21 CONFIGURATION / CONFLICT HELP MENU

This menu identifies and warns of accidental User programming that has connected a single PIN to more than one GOTO.

An automatic conflict check is performed at the end of each configuration session whenever you set ENABLE GOTO, GETFROM to DISABLED.

Finding a conflict causes the alarm message GOTO **CONFLICT** to be displayed. Refer to "4 Self-test messages" on page 31.

R	ENTRY MEI	NU	LEVEL	1
	CONFIGUR	ATION		2
	CONFLICT	HELP	MENU	3

NUMBER OF CONFLICTS MULTIPLE GOTO ON PIN

17.21.1 NUMBER OF CONFLICTS

Display the number of active GOTO conflicts.

Parameter description	Range
NUMBER OF CONFLICTS	0 to 50

NOTE: There will be at least two conflicts for each conflict PIN. Removing one GOTO from the conflict PIN will reduce the conflict number by 1.

R	E	VTRY	MEN	U	LEV	EL	1
	C	ONFIC	SURA	тіо	М		2
	С	ONFLI	СТ	HELI	P MEN	U	3
		NUM	IBER	OF	CONF	LICTS	

17.21.2 MULTIPLE GOTO ON PIN

Display the next PIN having more than one GOTO connected.

Parameter description	Range
MULTIPLE GOTO ON PIN	0 to 720

NOTE: There will be at least two conflicts for each conflict PIN. Removing one GOTO from the conflict PIN will reduce the conflict number by 1.

PIN 400 is "block disconnect". It indicates no conflicts.

R	ENTRY MENU LEVEL	1
	CONFIGURATION	2
	CONFLICT HELP MENU	3
	MULTIPLE GOTO ON	PIN

18 PIN tables

18.1 CHANGE PARAMETERS: 1 – 122

PIN TABLE FOR CHANGE PARAMETERS							
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST							
Property	Paragraph number	Menu / Description	Range	Default Value	PIN		
		Reserved			1		
R/P/S	11.1.1	CALIBRATION / Rated armature amps QuickStart	33% - 100%	33% A	2		
R/P	11.1.2	CALIBRATION / Current limit% QuickStart	0.00 - 150.00%	150.00%	3		
R/P/S	11.1.3	CALIBRATION / Rated field amps QuickStart	0.1 – 100.0% A	25.0% A	4		
R/P/S	11.1.4	CALIBRATION / Base rated motor rpm QuickStart	0 – 6000 rpm	1500 rpm	5		
R/P	11.1.5	CALIBRATION / Desired max rpm QuickStart	0 – 6000 rpm	1500 rpm	6		
R/P	11.1.6	CALIBRATION / Zero speed offset	±5.00%	0.00%	7		
R/P/S	11.1.7	CALIBRATION / Max tacho volts	±200.00 V	60.00 V	8		
R/P/S	11.1.8	CALIBRATION / Speed feedback type QuickStart	0 : ARMATURE VOLTS 1 : ANALOG TACHO 2 : ENCODER 3 : ENCODER + ARM VOLTS 4 : ENCODER + TACHO	0	9		
R/P/S	11.2.1	ENCODER SCALING / Quadrature enable	0 : DISABLED 1 : ENABLED	1	10		
R/P/S	11.2.2	ENCODER SCALING / Encoder lines	1 – 6000	1000	11		
R/P/S	11.2.3	ENCODER SCALING / Motor / encoder speed ratio	0.0000 - 3.0000	1.0000	12		
R/P/S	11.2.4	ENCODER SCALING / Encoder sign	0 : NON-INVERT 1 : INVERT	0	13		
R/P	11.1.9	CALIBRATION / IR compensation	0.00 - 100.00 %	0.00%	14		
R/P	11.1.10	CALIBRATION / Field current feedback trim	1.0000 - 1.1000	1.0000	15		
R/P	11.1.11	CALIBRATION / Armature volts trim	1.0000 - 1.1000	1.0000	16		
R/P	11.1.12	CALIBRATION / Analog tacho trim	1.0000 - 1.1000	1.0000	17		
R/P/S	11.1.13	CALIBRATION / Rated armature volts QuickStart	0.0 – 1000.0 V	460.0 V	18		
R/P/S	11.1.14	CALIBRATION / EL1/2/3 Rated AC volts QuickStart	0.0 – 1000.0 V	415.0 V	19		
R/P	11.1.15	CALIBRATION / MOTOR 1 or 2 select	0 : MOTOR 1 1 : MOTOR 2	0	20		
R	11.3.1	RUN MODE RAMPS / Ramp output monitor	±100.00%	0.00%	21		
R	11.3.2	RUN MODE RAMPS / Forward up time	0.1 – 600.0 s	10.0 s	22		
R	11.3.3	RUN MODE RAMPS / Forward down time	0.1 – 600.0 s	10.0 s	23		
R	11.3.4	RUN MODE RAMPS / Reverse up time	0.1 – 600.0 s	10.0 s	24		
R	11.3.5	RUN MODE RAMPS / Reverse down time	0.1 – 600.0 s	10.0 s	25		
	11.3.6	RUN MODE RAMPS / Ramp input	±105.00%	0.00%	26		
	11.3.7	RUN MODE RAMPS / Forward minimum speed	0.00 - 105.00%	0.00%	27		
	11.3.8	RUN MODE RAMPS / Reverse minimum speed	0.00105.00%	0.00%	28		
	11.3.9	RUN MODE RAMPS / Ramp automatic preset	0 : DISABLED 1 · ENABLED	1	29		

PIN TABLE	FOR CHANGE	PARAMETERS					
Key to Prop	Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST						
Property	Paragraph number	Menu / Description	Range	Default Value	PIN		
	11.3.10	RUN MODE RAMPS / Ramp external preset enable	0 : DISABLED 1 : ENABLED	0	30		
	11.3.11	RUN MODE RAMPS / Ramp preset value	±300.00%	0.00%	31		
	11.3.12	RUN MODE RAMPS / Ramp S profile %	0.00 - 100.00%	2.50%	32		
	11.3.13	RUN MODE RAMPS / Ramp hold enable	0 : DISABLED 1 : ENABLED	0	33		
	11.3.14	RUN MODE RAMPS / Ramping flag threshold	0.00 - 100.00%	0.50%	34		
R	11.3.15	RUN MODE RAMPS / Ramping flag	0 : LOW 1 : HIGH	0	35		
		Reserved		0	36		
R	11.4.1	JOG CRAWL SLACK / Jog speed 1	±100.00%	5.00%	37		
R	11.4.2	JOG CRAWL SLACK / Jog speed 2	±100.00%	-5.00%	38		
R	11.4.3	JOG CRAWL SLACK / Slack speed 1	±100.00%	5.00%	39		
R	11.4.4	JOG CRAWL SLACK / Slack speed 2	±100.00%	-5.00%	40		
R	11.4.5	JOG CRAWL SLACK / Crawl speed	±100.00%	10.00%	41		
R	11.4.6	JOG CRAWL SLACK / Jog mode select	0 : DISABLED 1 : ENABLED	0	42		
R	11.4.7	JOG CRAWL SLACK / Jog/Slack ramp	0.1 – 600.0 s	1.0 s	43		
		Reserved		0	44		
	11.5.1	MOTORISED POT RAMP / Motor pot output monitor	±300.00%	0.00%	45		
	11.5.2	MOTORISED POT RAMP / MP Up time	0.1 – 600.0 s	10.0 s	46		
	11.5.3	MOTORISED POT RAMP / MP Down time	0.1 – 600.0 s	10.0 s	47		
	11.5.4	MOTORISED POT RAMP / MP Up command	0 : DISABLED 1 : ENABLED	0	48		
	11.5.5	MOTORISED POT RAMP / MP Down command	0 : DISABLED 1 : ENABLED	0	49		
	11.5.6	MOTORISED POT RAMP / MP Maximum clamp	±300.00%	100.00%	50		
	11.5.7	MOTORISED POT RAMP / MP Minimum clamp	±300.00%	-100.00%	51		
	11.5.8	MOTORISED POT RAMP / MP preset enable	0 : DISABLED 1 : ENABLED	0	52		
	11.5.9	MOTORISED POT RAMP / MP Preset value	±300.00%	0.00%	53		
	11.5.10	MOTORISED POT RAMP / MP memory boot- up mode	0 : DISABLED 1 : ENABLED	0	54		
		Reserved		0	55		
R	11.6.2	STOP MODE RAMP / Stop ramp time	0.1 – 600.0 s	10.0 s	56		
	11.6.3	STOP MODE RAMP / Stop time limit	0.0 – 600.0 s	60.0 s	57		
	11.6.4	STOP MODE RAMP / Live delay mode	0 : DISABLED 1 : ENABLED	0	58		
R	11.6.5	STOP MODE RAMP / Drop-out speed	0.00 - 100.00%	2.00%	59		
	11.6.6	STOP MODE RAMP / Drop-out delay	0.1 – 600.0 s	1.0 s	60		
		Reserved		0	61		
R	11.7.1	SPEED REF SUMMER / Internal speed reference 1	±105.00%	0.00%	62		
R	11.7.2	SPEED REF SUMMER / Auxiliary speed reference 2	±105.00%	0.00%	63		
R	11.7.3	SPEED REF SUMMER / Speed reference 3 monitor	±105.00%	0.00%	64		
R	11.7.4	SPEED REF SUMMER / Ramped speed reference 4	±105.00%	0.00%	65		

PIN TABLE	FOR CHANGE	PARAMETERS			
Key to Pro	perties: R = in	REDUCED MENU, P = Not changed by 4-key rese	t, S = STOP DRIVE TO A	DJUST	
Property	Paragraph number	Menu / Description	Range	Default Value	PIN
R	11.7.5	SPEED REF SUMMER / Speed/ Current reference 3 sign	0 : NON-INVERT 1 : INVERT	0	66
R	11.7.6	SPEED REF SUMMER / Speed/ Current reference 3 ratio	±3.0000	1.0000	67
		Reserved		0	68
R	11.8.1	SPEED CONTROL / Max+ speed reference	0.00 - 105.00%	105.00%	69
R	11.8.2	SPEED CONTROL / Max- speed reference	0.00105.00%	-105.00%	70
R	11.8.3	SPEED CONTROL / Speed proportional gain	0.00 - 200.00	15.00	71
R	11.8.4	SPEED CONTROL / Speed integral time constant	0.001 – 30.000 s	1.000 s	72
	11.8.5	SPEED CONTROL / Speed integral reset	0 : DISABLED 1 : ENABLED	0	73
	11.9.2	SPEED PI ADAPTION / Low breakpoint	0.00 - 100.00%	1.00%	74
	11.9.3	SPEED PI ADAPTION / High breakpoint	0.00 - 100.00%	2.00%	75
	11.9.4	SPEED PI ADAPTION / Low breakpoint proportional gain	0.00 - 200.00	5.00	76
	11.9.5	SPEED PI ADAPTION / Low breakpoint integral time constant	0.001 – 30.000 s	1.000 s	77
	11.9.6	SPEED PI ADAPTION / Integral % during ramp	0.00 - 100.00%	100.00%	78
	11.9.7	SPEED PI ADAPTION / Adapt input enable	0 : DISABLED 1 : ENABLED	0	79
		Reserved		0	80
R	11.10.1	CURRENT CONTROL / Current clamp scaler	0.00 - 150.00%	150.00%	81
S	11.11.1	CURRENT OVERLOAD / Overload % target value	0.00 - 105.00%	105.00%	82
S	11.11.2	CURRENT OVERLOAD / Overload ramp time	0.0 – 20.0 s	20.0 s	83
	11.12.1	I DYNAMIC PROFILE / I Profile enable	0 : DISABLED 1 : ENABLED	0	84
	11.12.2	I DYNAMIC PROFILE / Speed breakpoint at high current	0.00 - 105.00%	75.00%	85
	11.12.3	I DYNAMIC PROFILE / Speed breakpoint at low current	0.00 - 105.00%	100.00%	86
	11.12.4	I DYNAMIC PROFILE / Current limit at low current	0.00 - 150.00%	100.00%	87
	11.10.2	CURRENT CONTROL / Dual current clamps enable	0 : DISABLED 1 : ENABLED	0	88
	11.10.3	CURRENT CONTROL / Upper current clamp	±100.00%	100.00%	89
	11.10.4	CURRENT CONTROL / Lower current clamp	±100.00%	-100.00%	90
	11.10.5	CURRENT CONTROL / Extra current reference	±300.00%	0.00%	91
S	11.10.6	CURRENT CONTROL / Autotune enable	0 : DISABLED 1 : ENABLED	0	92
R	11.10.7	CURRENT CONTROL / Current amp proportional gain	0.00 - 200.00	30.00	93
R	11.10.8	CURRENT CONTROL / Current amp integral gain	0.00 - 200.00	3.00	94
R	11.10.9	CURRENT CONTROL / Discontinuous current point	0.00 - 200.00%	13.00%	95
R/S	11.10.10	CURRENT CONTROL / 4-quadrant mode enable	0 : DISABLED 1 : ENABLED	1	96
	11.10.11	CURRENT CONTROL / Speed bypass current demand enable	0 : DISABLED 1 : ENABLED	0	97
	11.10.12	CURRENT CONTROL / Armature front stop	0 - 15000	624	98

PIN TABLE FOR CHANGE PARAMETERS								
Key to Prop	Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST							
Property	Paragraph number	Menu / Description	Range	Default Value	PIN			
R/S	11.13.1	FIELD CONTROL / Field enable	0 : DISABLED 1 : ENABLED	1	99			
R/P	11.13.2	FIELD CONTROL / Voltage output %	0.00 - 100.00%	90.00%	100			
	11.13.3	FIELD CONTROL / Field proportional gain	0 – 1000	10	101			
	11.13.4	FIELD CONTROL / Field integral gain	0 – 1000	100	102			
S	11.14.1	WEAKENING MENU / Field weakening enable	0 : DISABLED 1 : ENABLED	0	103			
	11.14.2	WEAKENING MENU / Field weakening proportional gain	0 – 1000	50	104			
	11.14.3	WEAKENING MENU / Field weakening integral TC	0 – 20000 ms	4000 ms	105			
	11.14.4	WEAKENING MENU / Field weakening derivative TC	10 – 5000 ms	200 ms	106			
	11.14.5	WEAKENING MENU / Field weakening feedback deriv TC	10 – 5000 ms	100 ms	107			
	11.14.6	WEAKENING MENU / Field weakening feedback int TC	10 – 5000 ms	100 ms	108			
	11.14.7	WEAKENING MENU / Spillover armature voltage %	0.00 – 100.00%	100.00%	109			
	11.14.8	WEAKENING MENU / Minimum field current %	0.00 – 100.00%	10.00%	110			
	11.13.5	FIELD CONTROL / Standby field enable	0 : DISABLED 1 : ENABLED	0	111			
	11.13.6	FIELD CONTROL / Standby field value	0.00 - 100.00%	25.00%	112			
	11.13.7	FIELD CONTROL / Field quench delay	0.0 – 600.0 s	10.0 s	113			
	11.13.8	FIELD CONTROL / Field reference	0.00 - 100.00%	100.00%	114			
R	11.15.1	ZERO INTERLOCKS / Standstill enable	0 : DISABLED 1 : ENABLED	0	115			
	11.15.2	ZERO INTERLOCKS / Zero reference start enable	0 : DISABLED 1 : ENABLED	0	116			
R	11.15.3	ZERO INTERLOCKS / Zero interlocks speed level	0.00 - 100.00%	1.00%	117			
R	11.15.4	ZERO INTERLOCKS / Zero interlocks current level	0.00 – 100.00%	1.50%	118			
	11.15.5	ZERO INTERLOCKS / At zero reference flag	0 : LOW 1 : HIGH	0	119			
	11.15.6	ZERO INTERLOCKS / At zero speed flag	0 : LOW 1 : HIGH	0	120			
	11.15.7	ZERO INTERLOCKS / At standstill flag	0 : LOW 1 : HIGH	0	121			
	11.16.2	SPINDLE ORIENTATE / Zero speed lock	0.00 - 100.00	0.00	122			

PIN TABLE	FOR DIAGNO	STICS			
Key to Pro	perties: R = in	REDUCED MENU, P = Not changed by 4-key reset	t, S = STOP DRIVE TO A	ADJUST	
Property	Paragraph number	Menu / Description	Range	Default Value	PIN
R	12.2.1	SPEED LOOP MONITOR / Total speed reference monitor	±300.00%	0.00%	123
	12.2.2	SPEED LOOP MONITOR / Speed demand monitor	±300.00%	0.00%	124
	12.2.3	SPEED LOOP MONITOR / Speed error monitor	±300.00%	0.00%	125
R	12.2.4	SPEED LOOP MONITOR / Armature volts monitor	±1250.0 V	0.0 V	126
	12.2.5	SPEED LOOP MONITOR / Armature volts % monitor	±300.00%	0.00%	127
	12.2.6	SPEED LOOP MONITOR / Back emf % monitor	±300.00%	0.00%	128
R	12.2.7	SPEED LOOP MONITOR / Tachogenerator volts monitor	±220.00 V	0.00 V	129
R	12.2.8	SPEED LOOP MONITOR / Motor RPM monitor	±7500 rpm	0 rpm	130
R	12.2.10	SPEED LOOP MONITOR / Speed feedback % monitor	±300.00%	0.00%	131
R	12.2.9	SPEED LOOP MONITOR / Encoder RPM monitor	±7500 rpm	0 rpm	132
R	12.3.1	ARM I LOOP MONITOR / Arm current demand monitor	±150.00%	0.00%	133
R	12.3.2	ARM I LOOP MONITOR / Arm current % monitor	±150.00%	0.00%	134
R	12.3.3	ARM I LOOP MONITOR / Arm current amps monitor	±3000.0 A	0.00 A	135
	12.3.4	ARM I LOOP MONITOR / Upper current limit monitor	±150.00%	0.00%	136
	12.3.5	ARM I LOOP MONITOR / Lower current limit monitor	±150.00%	0.00%	137
R	12.3.6	ARM I LOOP MONITOR / Actual upper limit monitor	±150.00%	0.00%	138
R	12.3.7	ARM I LOOP MONITOR / Actual lower limit monitor	±150.00%	0.00%	139
	12.3.8	ARM I LOOP MONITOR / Overload limit monitor	0 – 150.00%	0.00%	140
	12.3.9	ARM I LOOP MONITOR / At current limit flag	0 : LOW 1 : HIGH	0	141
		Reserved		0	142
R	12.4.1	FIELD MONITOR / Field demand monitor	0 .00- 100.00%	0.00%	143
R	12.4.2	FIELD MONITOR / Field current % monitor	0.00 - 125.00%	0.00%	144
R	12.4.3	FIELD MONITOR / Field amps monitor	0.00 – 50.00 A	0.00 A	145
	12.4.4	FIELD MONITOR / Field firing angle monitor	0 – 155°	0°	146
	12.4.5	FIELD MONITOR / Field active monitor	0 : DISABLED 1 : ENABLED	0	147
		Reserved		0	148
		Reserved		0	149
R	12.5.1	ANALOG IO MONITOR / UIP2 analog input monitor	±30.730 V	0.000 V	150
R	12.5.1	ANALOG IO MONITOR / UIP3 analog input monitor	±30.730 V	0.000 V	151
R	12.5.1	ANALOG IO MONITOR / UIP4 analog input monitor	±30.730 V	0.000 V	152

PIN TABLE FOR DIAGNOSTICS							
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST							
Property	Paragraph number	Menu / Description	Range	Default Value	PIN		
	12.5.1	ANALOG IO MONITOR / UIP5 analog input monitor	±30.730 V	0.000 V	153		
	12.5.1	ANALOG IO MONITOR / UIP6 analog input monitor	±30.730 V	0.000 V	154		
	12.5.1	ANALOG IO MONITOR / UIP7 analog input monitor	±30.730 V	0.000 V	155		
	12.5.1	ANALOG IO MONITOR / UIP8 analog input monitor	±30.730 V	0.000 V	156		
	12.5.1	ANALOG IO MONITOR / UIP9 analog input monitor	±30.730 V	0.000 V	157		
		Reserved		0	158		
	12.5.2	ANALOG IO MONITOR / AOP1 analog output monitor	±11.300 V	0.000 V	159		
	12.5.2	ANALOG IO MONITOR / AOP2 analog output monitor	±11.300 V	0.000 V	160		
	12.5.2	ANALOG IO MONITOR / AOP3 analog output monitor	±11.300 V	0.000 V	161		
R	12.6.1	DIGITAL IO MONITOR / UIP2 to 9 digital input monitor	0/1 for each UIP (0 = low)	00000000	162		
R	12.6.2	DIGITAL IO MONITOR / DIP1-4 and DIO1-4 dig IP monitor	0/1 for each DIP/DIO (0 = low)	00000000	163		
R	12.6.3	DIGITAL IO MONITOR / DOP1-3 + Control IPs dig OP mon	0/1 for each UIP (0 = low)	00000000	164		
	12.6.4	DIGITAL IO MONITOR / +Armature bridge flag	0 : LOW 1 : HIGH	0	165		
R	12.6.5	DIGITAL IO MONITOR / Drive start flag	0 : LOW 1 : HIGH	0	166		
R	12.6.6	DIGITAL IO MONITOR / Drive run flag	0 : LOW 1 : HIGH	0	167		
R	12.6.7	DIGITAL IO MONITOR / Internal running mode monitor	0 : STOP 1 : STOP 2 : RUN 3 : CRAWL 4 : JOG SPEED 1 5 : JOG SPEED 2 6 : SLACK SPEED 1 7 : SLACK SPEED 2	0	168		
R	12.1.1	DIAGNOSTICS / EL1/2 RMS monitor	0.0 – 1000.0 V	0.0 V	169		
R	12.1.2	DIAGNOSTICS / DC KILOWATTS monitor	±3000.0 kW	0.0 kW	170		

PIN TABLE FOR MOTOR DRIVE ALARMS								
Key to Prop	Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST							
Property	Paragraph number	Menu / Description	Range	Default Value	PIN			
R	13.1.1	MOTOR DRIVE ALARMS / Speed fb mismatch trip enable	0 : DISABLED 1 : ENABLED	1	171			
	13.1.2	MOTOR DRIVE ALARMS / Speed fb mismatch tolerance	0.00 – 100.00%	50.00%	172			
R	13.1.3	MOTOR DRIVE ALARMS / Field loss trip disable	0 : DISABLED 1 : ENABLED	1	173			
	13.1.4	MOTOR DRIVE ALARMS / Dig OP short-circuit trip enable	0 : DISABLED 1 : ENABLED	0	174			
	13.1.5	MOTOR DRIVE ALARMS / Missing pulse trip enable	0 : DISABLED 1 : ENABLED	1	175			
	13.1.6	MOTOR DRIVE ALARMS / Reference exchange trip enable	0 : DISABLED 1 : ENABLED	0	176			
	13.1.7	MOTOR DRIVE ALARMS / Overspeed delay time	0.1 – 600.0 s	5.0 s	177			
R	13.2.1	STALL TRIP MENU / Stall trip enable	0 : DISABLED 1 : ENABLED	1	178			
R	13.2.2	STALL TRIP MENU / Stall current level	0.00 - 150.00%	95.00%	179			
R	13.2.3	STALL TRIP MENU / Stall delay time	0.1 – 600.0 s	10.0 s	180			
	13.1.8	MOTOR DRIVE ALARMS / Active trip monitor	0000 - FFFF (hex)	0000	181			
	13.1.9	MOTOR DRIVE ALARMS / Stored trip monitor	0000 - FFFF (hex)	0000	182			
	13.1.10	MOTOR DRIVE ALARMS / External trip reset enable	0 : DISABLED 1 : ENABLED	1	183			

18.4 SERIAL LINKS: 184 - 244

PIN TABLE FOR SERIAL LINKS

Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST

Property	Paragraph	Menu / Description	Range	Default	PIN
	number			Value	
		Reserved		0	184
		Reserved		0	185
		Reserved		0	186
R	14	RS232 PORT1 / Port1 Baud rate	0:300 1:600 2:1200 3:2400 4:4800 5:9600 6:19200 7:34800 8:57600	5	187
S	14	PORT1 FUNCTION / Port1 function mode	0 : PARAM EXCH SELECT 1 : REF EXCHANGE MASTER 2 : REF EXCHANGE SLAVE 3 : ASCII COMMS	0	188
	14	PORT1 REF EXCHANGE / Ref exchange slave ratio	±3.0000	1.0000	189
	14	PORT1 REF EXCHANGE / Ref exchange slave sign	0 : NON-INVERT 1 : INVERT	0	190
	14	PORT1 REF EXCHANGE / Ref exchange slave monitor	±300.00%	0.00%	191
	14	PORT1 REF EXCHANGE / Ref exchange master monitor	±300.00%	0.00%	192
	14	PORT 1 COMMS LINK / Port 1 group ID	0 – 7	0	193
	14	PORT 1 COMMS LINK / Port 1 unit ID	0 – 15	0	194
	14	PORT 1 COMMS LINK / Port 1 error code	1 – 8	1	195
S	14	PORT 1 COMMS LINK / Port 1 DOP3 RTS mode	0 : DISABLED 1 : ENABLED	0	196
		Reserved			197
		Reserved			198
	17.18	FIELDBUS CONFIG / Fieldbus data control	00 – 11 (binary)	00	199
	12.8	FBUS ON-LINE MON (Hidden pin)	0 : LOW 1 : HIGH	0	200
		Reserved			201
R	17.18	FIELDBUS CONFIG / Fieldbus node ID	0 - 127	0	202
R	12.8	FIELDBUS / Fieldbus bits input diagnostic	00000000 - 11111111		203
		Reserved			204 to 212
R	12.8	FIELDBUS / Fieldbus bits output diagnostic	00000000 - 11111111		213
		Reserved			214 to 222

18.5 CONFIGURATION: 250 - 400

PIN TABLE FOR CONFIGURATION

Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST							
Property	Paragraph number	Menu / Description	Range	Default Value	PIN		
R	12.8	FIELDBUS / Anybus type diagnostic Note: M30 variants (Range values 9 to 18) are only supported in drive software issues >=V6.43.	0 : NOT FITTED 1 : NOT SUPPORTED 2 : PROFINEUS DPV1 3 : PROFINEUS DPV1 4 : ETHERNET/IP 5 : MODBUS TCP 6 : DEVICENET 7 : CANOPEN 8 : ETHERCAT 9 : PROFINET (M30) 11 : ETHERNET/IP (M30) 12 : MODBUS TCP (M30) 13 : DEVICENET (M30) 14 : CANOPEN (M30) 15 : ETHERCAT (M30) 15 : ETHERCAT (M30) 16 : PROFINET IP (M30) 17 : ETHERNET/IP (M30) 18 : MODBUS TCP 1P (M30)		223		
R	17.18	FIELDBUS CONFIG / Fieldbus baud rate	0 : 125 kbps 1 : 250 kbps 2 : 500 kbps 3 : 800 kbps 4 : 1 Mbps	0	224		
		Reserved			225 to 239		
	11.16.3	SPINDLE ORIENTATE / Marker enable	0 : DISABLED 1 : ENABLED	0	240		
	11.16.4	SPINDLE ORIENTATE / Marker offset	±15,000	0	241		
	11.16.5	SPINDLE ORIENTATE / Position reference	±30,000	0	242		
	11.16.6	SPINDLE ORIENTATE / Marker frequency monitor	20.00 – 655.35 Hz	0.00 Hz	243		
	11.16.7	SPINDLE ORIENTATE / In position flag	0 : LOW 1 : HIGH	0	244		
		Reserved			245 to 249		
	17.5.1	ANALOG OUTPUTS / Iarm o/p rectify enable	0 : DISABLED 1 : ENABLED	0	250		
	17.6.2	AOP1 (T10) SETUP / AOP1 Dividing factor	±3.0000	1.0000	251		
	17.6.3	AOP1 (T10) SETUP / AOP1 Offset	±100.00%	0.00%	252		
	17.6.4	AOP1 (T10) SETUP / AOP1 Rectifier mode enable	0 : DISABLED 1 : ENABLED	0	253		
	17.6.2	AOP2 (T11) SETUP / AOP2 Dividing factor	±3.0000	1.0000	254		
	17.6.3	AOP2 (T11) SETUP / AOP2 Offset	±100.00%	0.00%	255		
	17.6.4	AOP2 (T11) SETUP / AOP2 Rectifier mode enable	0 : DISABLED 1 : ENABLED	0	256		
	17.6.2	AOP3 (T12) SETUP / AOP3 Dividing factor	±3.0000	1.0000	257		
	17.6.3	AOP3 (T12) SETUP / AOP3 Offset	±100.00%	0.00%	258		
	17.6.4	AOP3 (T13) SETUP / AOP3 Rectifier mode enable	0 : DISABLED 1 : ENABLED	0	259		
	17.5.2	ANALOG OUTPUTS / Scope output select on AOP3	0 : DISABLED 1 : ENABLED	0	260		
	17.13.1	DOP1 (T22) SETUP / DOP1 Output value rectifier enable	0 : DISABLED 1 : ENABLED	1	261		

PIN TABLE	FOR CONFIG	URATION			
Key to Pro	perties: R = in	REDUCED MENU, P = Not changed by 4-key reset	t, S = STOP DRIVE TO A	DJUST	
Property	Paragraph number	Menu / Description	Range	Default Value	PIN
	17.13.2	DOP1 (T22) SETUP / DOP1 OP comparator threshold	±300.00%	0.00%	262
	17.13.3	DOP1 (T22) SETUP / DOP1 Output inversion mode	0 : NON-INVERT 1 : INVERT	0	263
	17.13.1	DOP2 (T23) SETUP / DOP2 Output value rectifier enable	0 : DISABLED 1 : ENABLED	1	264
	17.13.2	DOP2 (T23) SETUP / DOP2 OP comparator threshold	±300.00%	0.00%	265
	17.13.3	DOP2 (T23) SETUP / DOP2 Output inversion mode	0 : NON-INVERT 1 : INVERT	0	266
	17.13.1	DOP3 (T24) SETUP / DOP3 Output value rectifier enable	0 : DISABLED 1 : ENABLED	1	267
	17.13.2	DOP3 (T24) SETUP / DOP3 OP comparator threshold	±300.00%	0.00%	268
	17.13.3	DOP3 (T24) SETUP / DOP3 Output inversion mode	0 : NON-INVERT 1 : INVERT	0	269
		Reserved		0	270
S	17.11.1	DIO1 (T18) SETUP / DIO1 Output mode enable	0 : DISABLED 1 : ENABLED	0	271
	17.11.2	DIO1 (T18) SETUP / DIO1 Output value rectify enable	0 : DISABLED 1 : ENABLED	1	272
	17.11.3	DIO1 (T18) SETUP / DIO1 OP comparator threshold	±300.00%	0.00%	273
	17.11.4	DIO1 (T18) SETUP / DIO1 Output inversion mode	0 : NON-INVERT 1 : INVERT	0	274
	17.11.7	DIO1 (T18) SETUP / DIO1 Input HI value	±300.00%	0.01%	275
	17.11.8	DIO1 (T18) SETUP / DIO1 Input LO value	±300.00%	0.00%	276
S	17.11.1	DIO2 (T19) SETUP / DIO2 Output mode enable	0 : DISABLED 1 : ENABLED	0	277
	17.11.2	DIO2 (T19) SETUP / DIO2 Output value rectify enable	0 : DISABLED 1 : ENABLED	1	278
	17.11.3	DIO2 (T19) SETUP / DIO2 OP comparator threshold	±300.00%	0.00%	279
	17.11.4	DIO2 (T19) SETUP / DIO2 Output inversion mode	0 : NON-INVERT 1 : INVERT	0	280
	17.11.7	DIO2 (T19) SETUP / DIO2 Input HI value	±300.00%	0.01%	281
	17.11.8	DIO2 (T19) SETUP / DIO2 Input LO value	±300.00%	0.00%	282
S	17.11.1	DIO3 (T20) SETUP / DIO3 Output mode enable	0 : DISABLED 1 : ENABLED	0	283
	17.11.2	DIO3 (T20) SETUP / DIO3 Output value rectify enable	0 : DISABLED 1 : ENABLED	1	284
	17.11.3	DIO3 (T20) SETUP / DIO3 OP comparator threshold	±300.00%	0.00%	285
	17.11.4	DIO3 (T20) SETUP / DIO3 Output inversion mode	0 : NON-INVERT 1 : INVERT	0	286
	17.11.7	DIO3 (T20) SETUP / DIO3 Input HI value	±300.00%	0.01%	287
	17.11.8	DIO3 (T20) SETUP / DIO3 Input LO value	±300.00%	0.00%	288
S	17.11.1	DIO4 (T21) SETUP / DIO4 Output mode enable	0 : DISABLED 1 : ENABLED	0	289
	17.11.2	DIO4 (T21) SETUP / DIO4 Output value rectify enable	0 : DISABLED 1 : ENABLED	1	290
	17.11.3	DIO4 (T21) SETUP / DIO4 OP comparator threshold	±300.00%	0.00%	291
	17.11.4	DIO4 (T21) SETUP / DIO4 Output inversion mode	0 : NON-INVERT 1 : INVERT	0	292

PIN TABLE	FOR CONFIG	URATION					
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST							
Property	Paragraph number	Menu / Description	Range	Default Value	PIN		
	17.11.7	DIO4 (T21) SETUP / DIO4 Input HI value	±300.00%	0.01%	293		
	17.11.8	DIO4 (T21) SETUP / DIO4 Input LO value	±300.00%	0.00%	294		
		Reserved		0	295		
	17.14.2	STAGING POSTS / Digital post 1	0 : LOW 1 : HIGH	0	296		
	17.14.2	STAGING POSTS / Digital post 2	0 : LOW 1 : HIGH	0	297		
	17.14.2	STAGING POSTS / Digital post 3	0 : LOW 1 : HIGH	0	298		
	17.14.2	STAGING POSTS / Digital post 4	0 : LOW 1 : HIGH	0	299		
	17.14.3	STAGING POSTS / Analog post 1	±300.00%	0.00%	300		
	17.14.3	STAGING POSTS / Analog post 2	±300.00%	0.00%	301		
	17.14.3	STAGING POSTS / Analog post 3	±300.00%	0.00%	302		
	17.14.3	STAGING POSTS / Analog post 4 PIN 303	±300.00%	0.00%	303		
		Reserved		0	304		
	17.15.1	SOFTWARE TERMINALS / Anded run	0 : LOW 1 : HIGH	1	305		
	17.15.2	SOFTWARE TERMINALS / Anded jog	0 : LOW 1 : HIGH	1	306		
	17.15.3	SOFTWARE TERMINALS / Anded start	0 : LOW 1 : HIGH	1	307		
	17.15.4	SOFTWARE TERMINALS / Internal run	0 : LOW 1 : HIGH	0	308		
		Reserved		0	309		
	17.8.1	DIP1 (T14) SETUP / DIP1 Input HI value	±300.00%	0.01%	310		
	17.8.2	DIP1 (T14) SETUP / DIP1 Input LO value	±300.00%	0.00%	311		
	17.8.1	DIP2 (T15) SETUP / DIP2 Input HI value	±300.00%	0.01%	312		
	17.8.2	DIP2 (T15) SETUP / DIP2 Input LO value	±300.00%	0.00%	313		
	17.8.1	DIP3 (T16) SETUP / DIP3 Input HI value	±300.00%	0.01%	314		
	17.8.2	DIP3 (T16) SETUP / DIP3 Input LO value	±300.00%	0.00%	315		
	17.8.1	DIP4 (T17) SETUP / DIP4 Input HI value	±300.00%	0.01%	316		
	17.8.2	DIP4 (T17) SETUP / DIP4 Input LO value	±300.00%	0.00%	317		
	17.9.1	RUN INPUT SETUP / RUN input HI value	±300.00%	0.01%	318		
	17.9.2	RUN INPUT SETUP / RUN input LO value	±300.00%	0.00%	319		
	17.4.1	UIP2 (T2) SETUP / UIP2 Input range	0:±10V 1:±5V 2:±20V 3:±30V	0	320		
	17.4.2	UIP2 (T2) SETUP / UIP2 Input offset	±100.00%	0.00%	321		
	17.4.3	UIP2 (T2) SETUP / UIP2 Linear scaling factor	±3.0000	1.0000	322		
	17.4.4	UIP2 (T2) SETUP / UIP2 Max clamp level	±300.00%	100.00%	323		
	17.4.5	UIP2 (T2) SETUP / UIP2 Min clamp level	±300.00%	-100.00%	324		
	17.4.9	UIP2 (T2) SETUP / UIP2 Digital IP, HI value for output 1	±300.00%	0.01%	325		
	17.4.10	UIP2 (T2) SETUP / UIP2 Digital IP, LO value for output 1	±300.00%	0.00%	326		
	17.4.11	UIP2 (T2) SETUP / UIP2 Digital IP, HI value for output 2	±300.00%	0.01%	327		
	17.4.12	UIP2 (T2) SETUP / UIP2 Digital IP, LO value for output 2	±300.00%	0.00%	328		

PIN TABLE FOR CONFIGURATION							
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST							
Property	Paragraph number	Menu / Description	Range	Default Value	PIN		
	17.4.13	UIP2 (T2) SETUP / UIP2 Threshold	±30.000 V	6.000 V	329		
	17.4.1	UIP3 (T3) SETUP / UIP3 Input range	0:±10V 1:±5V 2:±20V 3:±30V	0	330		
	17.4.2	UIP3 (T3) SETUP / UIP3 Input offset	±100.00%	0.00%	331		
	17.4.3	UIP3 (T3) SETUP / UIP3 Linear scaling factor	±3.0000	1.0000	332		
	17.4.4	UIP3 (T3) SETUP / UIP3 Max clamp level	±300.00%	100.00%	333		
	17.4.5	UIP3 (T3) SETUP / UIP3 Min clamp level	±300.00%	-100.00%	334		
	17.4.9	UIP3 (T3) SETUP / UIP3 Digital IP, HI value for output 1	±300.00%	0.01%	335		
	17.4.10	UIP3 (T3) SETUP / UIP3 Digital IP, LO value for output 1	±300.00%	0.00%	336		
	17.4.11	UIP3 (T3) SETUP / UIP3 Digital IP, HI value for output 2	±300.00%	0.01%	337		
	17.4.12	UIP3 (T3) SETUP / UIP3 Digital IP, LO value for output 2	±300.00%	0.00%	338		
	17.4.13	UIP3 (T3) SETUP / UIP3 Threshold	±30.000 V	6.000 V	339		
	17.4.1	UIP4 (T4) SETUP / UIP4 Input range	0:±10V 1:±5V 2:±20V 3:±30V	0	340		
	17.4.2	UIP4 (T4) SETUP / UIP4 Input offset	±100.00%	0.00%	341		
	17.4.3	UIP4 (T4) SETUP / UIP4 Linear scaling factor	±3.0000	1.0000	342		
	17.4.4	UIP4 (T4) SETUP / UIP4 Max clamp level	±300.00%	100.00%	343		
	17.4.5	UIP4 (T4) SETUP / UIP4 Min clamp level	±300.00%	-100.00%	344		
	17.4.9	UIP4 (T4) SETUP / UIP4 Digital IP, HI value for output 1	±300.00%	0.01%	345		
	17.4.10	UIP4 (T4) SETUP / UIP4 Digital IP, LO value for output 1	±300.00%	0.00%	346		
	17.4.11	UIP4 (T4) SETUP / UIP4 Digital IP, HI value for output 2	±300.00%	0.01%	347		
	17.4.12	UIP4 (T4) SETUP / UIP4 Digital IP, LO value for output 2	±300.00%	0.00%	348		
	17.4.13	UIP4 (T4) SETUP / UIP4 Threshold	±30.000 V	6.000 V	349		
	17.4.1	UIP5 (T5) SETUP / UIP5 Input range	0:±10V 1:±5V 2:±20V 3:±30V	0	350		
	17.4.2	UIP5 (T5) SETUP / UIP5 Input offset	±100.00%	0.00%	351		
	17.4.3	UIP5 (T5) SETUP / UIP5 Linear scaling factor	±3.0000	1.0000	352		
	17.4.4	UIP5 (T5) SETUP / UIP5 Max clamp level	±300.00%	100.00%	353		
	17.4.5	UIP5 (T5) SETUP / UIP5 Min clamp level	±300.00%	-100.00%	354		
	17.4.9	UIP5 (T5) SETUP / UIP5 Digital IP, HI value for output 1	±300.00%	0.01%	355		
	17.4.10	UIP5 (T5) SETUP / UIP5 Digital IP, LO value for output 1	±300.00%	0.00%	356		
	17.4.11	UIP5 (T5) SETUP / UIP5 Digital IP, HI value for output 2	±300.00%	0.01%	357		
	17.4.12	UIP5 (T5) SETUP / UIP5 Digital IP, LO value for output 2	±300.00%	0.00%	358		
	17.4.13	UIP5 (T5) SETUP / UIP5 Threshold	±30.000 V	6.000 V	359		

PIN TABLE	FOR CONFIG	URATION			
Key to Pro	perties: R = in	REDUCED MENU, P = Not changed by 4-key rese	t, S = STOP DRIVE TO	ADJUST	
Property	Paragraph number	Menu / Description	Range	Default Value	PIN
	17.4.1	UIP6 (T6) SETUP / UIP6 Input range	0:±10V 1:±5V 2:±20V 3:±30V	0	360
	17.4.2	UIP6 (T6) SETUP / UIP6 Input offset	±100.00%	0.00%	361
	17.4.3	UIP6 (T6) SETUP / UIP6 Linear scaling factor	±3.0000	1.0000	362
	17.4.4	UIP6 (T6) SETUP / UIP6 Max clamp level	±300.00%	100.00%	363
	17.4.5	UIP6 (T6) SETUP / UIP6 Min clamp level	±300.00%	-100.00%	364
	17.4.9	UIP6 (T6) SETUP / UIP6 Digital IP, HI value for output 1	±300.00%	0.01%	365
	17.4.10	UIP6 (T6) SETUP / UIP6 Digital IP, LO value for output 1	±300.00%	0.00%	366
	17.4.11	UIP6 (T6) SETUP / UIP6 Digital IP, HI value for output 2	±300.00%	0.01%	367
	17.4.12	UIP6 (T6) SETUP / UIP6 Digital IP, LO value for output 2	±300.00%	0.00%	368
	17.4.13	UIP6 (T6) SETUP / UIP6 Threshold	±30.000 V	6.000 V	369
	17.4.1	UIP7 (T7) SETUP / UIP7 Input range	0:±10V 1:±5V 2:±20V 3:±30V	0	370
	17.4.2	UIP7 (T7) SETUP / UIP7 Input offset	±100.00%	0.00%	371
	17.4.3	UIP7 (T7) SETUP / UIP7 Linear scaling factor	±3.0000	1.0000	372
	17.4.4	UIP7 (T7) SETUP / UIP7 Max clamp level	±300.00%	100.00%	373
	17.4.5	UIP7 (T7) SETUP / UIP7 Min clamp level	±300.00%	-100.00%	374
	17.4.9	UIP7 (T7) SETUP / UIP7 Digital IP, HI value for output 1	±300.00%	0.01%	375
	17.4.10	UIP7 (T7) SETUP / UIP7 Digital IP, LO value for output 1	±300.00%	0.00%	376
	17.4.11	UIP7 (T7) SETUP / UIP7 Digital IP, HI value for output 2	±300.00%	0.01%	377
	17.4.12	UIP7 (T7) SETUP / UIP7 Digital IP, LO value for output 2	±300.00%	0.00%	378
	17.4.13	UIP7 (T7) SETUP / UIP7 Threshold	±30.000 V	6.000 V	379
	17.4.1	UIP8 (T8) SETUP / UIP8 Input range	0 : ±10 V 1 : ±5 V 2 : ±20 V 3 : ±30 V	0	380
	17.4.2	UIP8 (T8) SETUP / UIP8 Input offset	±100.00%	0.00%	381
	17.4.3	UIP8 (T8) SETUP / UIP8 Linear scaling factor	±3.0000	1.0000	382
	17.4.4	UIP8 (T8) SETUP / UIP8 Max clamp level	±300.00%	100.00%	383
	17.4.5	UIP8 (T8) SETUP / UIP8 Min clamp level	±300.00%	-100.00%	384
	17.4.9	UIP8 (T8) SETUP / UIP8 Digital IP, HI value for output 1	±300.00%	0.01%	385
	17.4.10	UIP8 (T8) SETUP / UIP8 Digital IP, LO value for output 1	±300.00%	0.00%	386
	17.4.11	UIP8 (T8) SETUP / UIP8 Digital IP, HI value for output 2	±300.00%	0.01%	387
	17.4.12	UIP8 (T8) SETUP / UIP8 Digital IP, LO value for output 2	±300.00%	0.00%	388
	17.4.13	UIP8 (T8) SETUP / UIP8 Threshold	±30.000 V	6.000 V	389

PIN TABLE FOR CONFIGURATION								
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST								
Property	Paragraph number	Menu / Description	Default Value	PIN				
	17.4.1	UIP9 (T9) SETUP / UIP9 Input range	0:±10V 1:±5V 2:±20V 3:±30V	0	390			
	17.4.2	UIP9 (T9) SETUP / UIP9 Input offset	±100.00%	0.00%	391			
	17.4.3	UIP9 (T9) SETUP / UIP9 Linear scaling factor	±3.0000	1.0000	392			
	17.4.4	UIP9 (T9) SETUP / UIP9 Max clamp level	±300.00%	100.00%	393			
	17.4.5	UIP9 (T9) SETUP / UIP9 Min clamp level	±300.00%	-100.00%	394			
	17.4.9	UIP9 (T9) SETUP / UIP9 Digital IP, HI value for output 1	±300.00%	0.01%	395			
	17.4.10	UIP9 (T9) SETUP / UIP9 Digital IP, LO value for output 1	±300.00%	0.00%	396			
	17.4.11	UIP9 (T9) SETUP / UIP9 Digital IP, HI value for output 2	±300.00%	0.01%	397			
	17.4.12	UIP9 (T9) SETUP / UIP9 Digital IP, LO value for output 2	±300.00%	0.00%	398			
	17.4.13	UIP9 (T9) SETUP / UIP9 Threshold	±30.000 V	6.000 V	399			
	9.4	Block disconnect			400			

PIN TABLE FOR APPLICATION BLOCKS

Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST

Property	Paragraph number	Menu / Description	Range	Default Value	PIN
	16.1.1	SUMMER 1 / Total output value monitor	±200.00%	0.00%	401
	16.1.2	SUMMER 1 / Sign 1	0 : NON-INVERT 1 : INVERT	0	402
	16.1.3	SUMMER 1 / Sign 2	0 : NON-INVERT 1 : INVERT	0	403
	16.1.4	SUMMER 1 / Ratio 1	±3.0000	1.0000	404
	16.1.5	SUMMER 1 / Ratio 2	±3.0000	1.0000	405
	16.1.6	SUMMER 1 / Divider 1	±3.0000	1.0000	406
	16.1.7	SUMMER 1 / Divider 2	±3.0000	1.0000	407
	16.1.8	SUMMER 1 / Input 1	±300.00%	0.00%	408
	16.1.9	SUMMER 1 / Input 2	±300.00%	0.00%	409
	16.1.10	SUMMER 1 / Input 3	±300.00%	0.00%	410
	16.1.11	SUMMER 1 / Deadband	0.00 - 100.00%	0.00%	411
	16.1.12	SUMMER 1 / Output sign inverter	0 : NON-INVERT 1 : INVERT	0	412
	16.1.13	SUMMER 1 / Symmetrical clamp	0.00 - 200.00%	105.00%	413
		Reserved			414
	16.1.1	SUMMER 2 / Total output value monitor	±200.00%	0.00%	415
	16.1.2	SUMMER 2 / Sign 1	0 : NON-INVERT 1 : INVERT	0	416
	16.1.3	SUMMER 2 / Sign 2	0 : NON-INVERT 1 : INVERT	0	417
	16.1.4	SUMMER 2 / Ratio 1	±3.0000	1.0000	418
	16.1.5	SUMMER 2 / Ratio 2	±3.0000	1.0000	419
	16.1.6	SUMMER 2 / Divider 1	±3.0000	1.0000	420
	16.1.7	SUMMER 2 / Divider 2	±3.0000	1.0000	421
	16.1.8	SUMMER 2 / Input 1	±300.00%	0.00%	422
	16.1.9	SUMMER 2 / Input 2	±300.00%	0.00%	423
	16.1.10	SUMMER 2 / Input 3	±300.00%	0.00%	424
	16.1.11	SUMMER 2 / Deadband	0.00 - 100.00%	0.00%	425
	16.1.12	SUMMER 2 / Output sign inverter	0 : NON-INVERT 1 : INVERT	0	426
	16.1.13	SUMMER 2 / Symmetrical clamp	0.00 - 200.00%	105.00%	427
		Reserved		0	428
	16.2.1	PID 1 / Pid1 output value monitor	±300.00%	0.00%	429
	16.2.2	PID 1 / Pid1 IP1 value	±300.00%	0.00%	430
	16.2.3	PID 1 / Pid1 IP1 ratio	±3.0000	1.0000	431
	16.2.4	PID 1 / Pid1 IP1 divider	±3.0000	1.0000	432
	16.2.5	PID 1 / Pid1 IP2 value	±300.00%	0.00%	433
	16.2.6	PID 1 / Pid1 IP2 ratio	±3.0000	1.0000	434
	16.2.7	PID 1 / Pid1 IP2 divider	±3.0000	1.0000	435
	16.2.8	PID 1 / Pid1 proportional gain	0.0 - 100.0	1.0	436
	16.2.9	PID 1 / Pid1 integrator time constant	0.01 – 100.00 s	5.00 s	437
	16.2.10	PID 1 / Pid1 derivative time constant	0.000 – 10.000s	0.000 s	438
	16.2.11	PID 1 / Pid1 derivative filter time constant	0.000 - 10.000s	0.100 s	439

PIN TABLE	FOR APPLICA	ATION BLOCKS					
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST							
Property	Paragraph number	Menu / Description	Range	Default Value	PIN		
	16.2.12	PID 1 / Pid1 integrator preset enable	0 : DISABLED 1 : ENABLED	0	440		
	16.2.13	PID 1 / Pid1 integrator preset value	±300.00%	0.00%	441		
	16.2.14	PID 1 / Pid1 reset enable	0 : DISABLED 1 : ENABLED	0	442		
	16.2.15	PID 1 / Pid1 positive clamp level	0.00 - 105.00%	100.00%	443		
	16.2.16	PID 1 / Pid1 negative clamp level	0.00105.00%	-100.00%	444		
	16.2.17	PID 1 / Pid1 output % trim	±3.0000	0.2000	445		
	16.2.18	PID 1 / Pid1 Profile mode select	0 – 4 modes	0 (constant)	446		
	16.2.19	PID 1 / Pid1 Minimum proportional gain %	0.00 - 100.00%	20.00%	447		
	16.2.20	PID 1 / Pid1 Profile X-axis minimum	0.00 - 100.00%	0.00%	448		
	16.2.22	PID 1 / Pid1 Profiled proportional gain output	0.0 - 100.0	0.0	449		
	16.2.23	PID 1 / Pid1 clamp flag monitor	0 : LOW 1 : HIGH	0	450		
	16.2.24	PID 1 / Pid1 error value monitor	±105.00%	0.00%	451		
	16.2.1	PID 2 / Pid2 output value monitor	±300.00%	0.00%	452		
	16.2.2	PID 2 / Pid2 IP1 value	±300.00%	0.00%	453		
	16.2.3	PID 2 / Pid2 IP1 ratio	±3.0000	1.0000	454		
	16.2.4	PID 2 / Pid2 IP1 divider	±3.0000	1.0000	455		
	16.2.5	PID 2 / Pid2 IP2 value	±300.00%	0.00%	456		
	16.2.6	PID 2 / Pid2 IP2 ratio	±3.0000	1.0000	457		
	16.2.7	PID 2 / Pid2 IP2 divider	±3.0000	1.0000	458		
	16.2.8	PID 2 / Pid2 proportional gain	0.00 - 100.0	1.0	459		
	16.2.9	PID 2 / Pid2 integrator time constant	0.01 – 100.00 s	5.00 s	460		
	16.2.10	PID 2 / Pid2 derivative time constant	0.000 – 10.000 s	0.000 s	461		
	16.2.11	PID 2 / Pid2 derivative filter time constant	0.000 – 10.000 s	0.100 s	462		
	16.2.12	PID 2 / Pid2 integrator preset enable	0 : DISABLED 1 : ENABLED	0	463		
	16.2.13	PID 2 / Pid2 integrator preset value	±300.00%	0.00%	464		
	16.2.14	PID 2 / Pid2 reset enable	0 : DISABLED 1 : ENABLED	0	465		
	16.2.15	PID 2 / Pid2 positive clamp level	0.00 - 105.00%	100.00%	466		
	16.2.16	PID 2 / Pid2 negative clamp level	0.00105.00%	-100.00%	467		
	16.2.17	PID 2 / Pid2 output % trim	±3.0000	0.2000	468		
	16.2.18	PID 2 / Pid2 Profile mode select	0 – 4 modes	0 (constant)	469		
	16.2.19	PID 2 / Pid2 Minimum proportional gain %	0.00 - 100.00%	20.00%	470		
	16.2.20	PID 2 / Pid2 Profile X-axis minimum	0.00 - 100.00%	0.00%	471		
	16.2.22	PID 2 / Pid2 Profiled proportional gain output	0.0 - 100.0	0.0	472		
	16.2.23	PID 2 / Pid2 clamp flag monitor	0 : LOW 1 : HIGH	0	473		
	16.2.24	PID 2 / Pid2 error value monitor	±105.00%	0.00%	474		
	16.3.1	PARAMETER PROFILER / Profile Y output monitor	±300.00%	0.00%	475		
	16.3.2	PARAMETER PROFILER / Profiler mode	0 – 4 modes	0 (constant)	476		
	16.3.3	PARAMETER PROFILER / Profile Y at Xmin	±300.00%	0.00%	477		
	16.3.4	PARAMETER PROFILER / Profile Y at Xmax	±300.00%	100.00%	478		
	16.3.5	PARAMETER PROFILER / Profile X-axis minimum	±300.00%	0.00%	479		

PIN TABLE	FOR APPLICA	TION BLOCKS					
Key to Pro	Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST						
Property	Paragraph number	Menu / Description	Range	Default Value	PIN		
	16.3.6	PARAMETER PROFILER / Profile X-axis maximum	±300.00%	100.00%	480		
	16.3.7	PARAMETER PROFILER / Profile X-axis rectify	0 : DISABLED 1 : ENABLED	1	481		
		Reserved			482		
	16.4.1	REEL DIAMETER CALC / Diameter output monitor	0.00 - 100.00%	0.00%	483		
	16.4.2	REEL DIAMETER CALC / Web speed input	±105.00%	0.00%	484		
	16.4.3	REEL DIAMETER CALC / Reel speed input	±105.00%	0.00%	485		
	16.4.4	REEL DIAMETER CALC / Minimum diameter input	0.00 - 100.00%	10.00%	486		
	16.4.5	REEL DIAMETER CALC / Diameter calculation min speed	±105.00%	5.00%	487		
	16.4.6	REEL DIAMETER CALC / Diameter hold enable	0 : DISABLED 1 : ENABLED	0	488		
	16.4.7	REEL DIAMETER CALC / Diameter filter time constant	0.00 – 200.00 s	5.00 s	489		
	16.4.8	REEL DIAMETER CALC / Diameter preset enable	0 : DISABLED 1 : ENABLED	0	490		
	16.4.9	REEL DIAMETER CALC / Diameter preset value	0.00 - 100.00%	10.00%	491		
	16.4.10	REEL DIAMETER CALC / Diameter web break threshold	0.00 - 100.00%	7.50%	492		
	16.4.11	REEL DIAMETER CALC / Diameter memory boot-up	0 : DISABLED 1 : ENABLED	0	493		
	16.5.3	TAPER TENSION CALC / Total tension output monitor	±100.00%	0.00%	494		
	16.5.4	TAPER TENSION CALC / Tension reference	0.00 - 100.00%	0.00%	495		
	16.5.5	TAPER TENSION CALC / Taper strength input	±100.00%	0.00%	496		
	16.5.6	TAPER TENSION CALC / Hyperbolic taper enable	0 : DISABLED 1 : ENABLED	0	497		
	16.5.7	TAPER TENSION CALC / Tension trim input	±100.00%	0.00%	498		
	16.5.8	TAPER TENSION CALC / Tapered tension monitor	±100.00%	0.00%	499		
	16.6.1	TORQUE COMPENSATOR / Torque demand monitor	±300.00%	0.00%	500		
	16.6.2	TORQUE COMPENSATOR / Torque trim input	±150.00%	0.00%	501		
	16.6.3	TORQUE COMPENSATOR / Stiction compensation	±300.00%	0.00%	502		
	16.6.4	TORQUE COMPENSATOR / Stiction web speed threshold	0.00 - 10.00%	5.00%	503		
	16.6.5	TORQUE COMPENSATOR / Static friction comp	±300.00%	0.00%	504		
	16.6.6	TORQUE COMPENSATOR / Dynamic friction comp	±300.00%	0.00%	505		
	16.6.7	TORQUE COMPENSATOR / Friction sign	0 : NON-INVERT 1 : INVERT	0	506		
	16.6.8	TORQUE COMPENSATOR / Fixed mass inertia	±300.00%	0.00%	507		
	16.6.9	TORQUE COMPENSATOR / Variable mass inertia	±300.00%	0.00%	508		
	16.6.10	TORQUE COMPENSATOR / Material width	0.00 - 200.00%	100.00%	509		
	16.6.11	TORQUE COMPENSATOR / Accel line speed input	±105.00%	0.00%	510		
	16.6.12	TORQUE COMPENSATOR / Accel scaler	±100.00	10.00	511		

PIN TABLE FOR APPLICATION BLOCKS						
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST						
Property	Paragraph number	Menu / Description	Range	Default Value	PIN	
	16.6.13	TORQUE COMPENSATOR / Accel input/mon	0.00 – 105.00%	0.00%	512	
	16.6.14	TORQUE COMPENSATOR / Accel filter time constant	0.00 – 200.00 s	0.10 s	513	
	16.6.15	TORQUE COMPENSATOR / Tension demand IP	±100.00%	0.00%	514	
	16.6.16	TORQUE COMPENSATOR / Tension scaler	±3.0000	1.0000	515	
	16.6.17	TORQUE COMPENSATOR / Torque memory select enable	0 : DISABLED 1 : ENABLED	0	516	
	16.6.18	TORQUE COMPENSATOR / Torque memory input	±300.00%	0.00%	517	
	16.6.19	TORQUE COMPENSATOR / Tension enable	0 : DISABLED 1 : ENABLED	1	518	
	16.6.20	TORQUE COMPENSATOR / Overwind/ underwind	0 : DISABLED 1 : ENABLED	1	519	
	16.6.21	TORQUE COMPENSATOR / Inertia comp monitor	±300.00%	0.00%	520	
		Reserved			521	
		Reserved			522	
	16.8.1	PRESET SPEED / Preset speed output monitor	±300.00%	0.00%	523	
	16.8.2	PRESET SPEED / Digital input 1 LSB	0 : LOW 1 : HIGH	0	524	
	16.8.2	PRESET SPEED / Digital input 2	0 : LOW 1 : HIGH	0	525	
	16.8.2	PRESET SPEED / Digital input 3 MSB	0 : LOW 1 : HIGH	0	526	
	16.8.5	PRESET SPEED / Value for 000	±300.00%	0.00%	527	
	16.8.5	PRESET SPEED / Value for 001	±300.00%	0.00%	528	
	16.8.5	PRESET SPEED / Value for 010	±300.00%	0.00%	529	
	16.8.5	PRESET SPEED / Value for 011	±300.00%	0.00%	530	
	16.8.5	PRESET SPEED / Value for 100	±300.00%	0.00%	531	
	16.8.5	PRESET SPEED / Value for 101	±300.00%	0.00%	532	
	16.8.5	PRESET SPEED / Value for 110	±300.00%	0.00%	533	
	16.8.5	PRESET SPEED / Value for 111	±300.00%	0.00%	534	
	16.16	16-BIT DEMULTIPLEX (bits 1-9) Armature overcurrent 535, Speed fbk mismatch 536, Overspeed 537, Armature overvolts 538, Field overcurrent 539, Field loss 540, Missing pulse 541, Stall trip 542, Thermistor on T30 543	0 : LOW 1 : HIGH	0	535 to 543	
	16.9.1	MULTI-FUNCTION 1 Function mode 1	0 : C/O SWITCH or Jumper 1: COMPARATOR 2: AND GATE 3: OR GATE 4: INVERT 5: SIGN CHANGER 6: RECTIFIER	0	544	
	16.9.2	MULTI-FUNCTION 1 Output select 1	0 : DISABLED 1 : ENABLED	0	545	
	16.9.1	MULTI-FUNCTION 2 Function mode 2	0: C/O SWITCH or Jumper 1: COMPARATOR 2: AND GATE 3: OR GATE 4: INVERT 5: SIGN CHANGER 6: RECTIFIER	0	546	
	16.9.2	MULTI-FUNCTION 2 Output select 2	0 : DISABLED 1 : ENABLED	0	547	

PIN TABLE FOR APPLICATION BLOCKS						
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST						
Property	Paragraph number	Menu / Description	Range	Default Value	PIN	
	16.9.1	MULTI-FUNCTION 3 Function mode 3	0 : C/O SWITCH or Jumper 1: COMPARATOR 2: AND GATE 3: OR GATE 4: INVERT 5: SIGN CHANGER 6: RECTIFIER	0	548	
	16.9.2	MULTI-FUNCTION 3 Output select 3	0 : DISABLED 1 : ENABLED	0	549	
	16.9.1	MULTI-FUNCTION 4 Function mode 4 PIN 550	0: C/O SWITCH or Jumper 1: COMPARATOR 2: AND GATE 3: OR GATE 4: INVERT 5: SIGN CHANGER 6: RECTIFIER	0	550	
	16.9.2	MULTI-FUNCTION 4 Output select 4 PIN 551	0 : DISABLED 1 : ENABLED	0	551	
	16.9.1	MULTI-FUNCTION 5 Function mode 5 PIN 552	0 : C/O SWITCH or Jumper 1 : COMPARATOR 2 : AND GATE 3 : OR GATE 4 : INVERT 5 : SIGN CHANGER 6 : RECTIFIER	0	552	
	16.9.2	MULTI-FUNCTION 5 Output select 5 PIN 553	0 : DISABLED 1 : ENABLED	0	553	
	16.9.1	MULTI-FUNCTION 6 Function mode 6 PIN 554	0: C/O SWITCH or Jumper 1: COMPARATOR 2: AND GATE 3: OR GATE 4: INVERT 5: SIGN CHANGER 6: RECTIFIER	0	554	
	16.9.2	MULTI-FUNCTION 6 Output select 6 PIN 555	0 : DISABLED 1 : ENABLED	0	555	
	16.9.1	MULTI-FUNCTION 7 Function mode 7 PIN 556	0 : C/O SWITCH or Jumper 1: COMPARATOR 2: AND GATE 3: OR GATE 4 : INVERT 5 : SIGN CHANGER 6 : RECTIFIER	0	556	
	16.9.2	MULTI-FUNCTION 7 Output select 7 PIN 557	0 : DISABLED 1 : ENABLED	0	557	
	16.9.1	MULTI-FUNCTION 8 Function mode 8 PIN 558	0: C/O SWITCH or Jumper 1: COMPARATOR 2: AND GATE 3: OR GATE 4: INVERT 5: SIGN CHANGER 6: RECTIFIER	0	558	
	16.9.2	MULTI-FUNCTION 8 Output select 8 PIN 559	0 : DISABLED 1 : ENABLED	0	559	
	16.10.1	LATCH / Latch output monitor PIN 560	±300.00%	0.00%	560	
	16.10.2	LATCH / Latch data input PIN 561	0 : LOW 1 : HIGH	0	561	
	16.10.3	LATCH / Latch clock input PIN 562	0 : LOW 1 : HIGH	0	562	

PIN TABLE FOR APPLICATION BLOCKS						
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST						
Property	Paragraph number	Menu / Description	Range	Default Value	PIN	
	16.10.4	LATCH / Latch set input PIN 563	0 : LOW 1 : HIGH	0	563	
	16.10.5	LATCH / Latch reset input PIN 564	0 : LOW 1 : HIGH	0	564	
	16.10.6	LATCH / Latch value for high output PIN 565	±300.00%	0.01%	565	
	16.10.7	LATCH / Latch value for low output PIN 566	±300.00%	0.00%	566	
	16.16	16-BIT DEMULTIPLEX (bit 10) Heatsink overtemp	0 : LOW 1 : HIGH	0	567	
	16.11.1	FILTER 1 / Filter1 output monitor PIN 568	±315.00%	0.00%	568	
	16.11.2	FILTER 1 / Filter1 time constant PIN 569	0.000 – 32.000 s	1.000 s	569	
	16.16	16-BIT DEMULTIPLEX (bits 11 – 13) Short cct digital output 570, Bad reference Exch 571, Contactor lock out 572	0 : LOW 1 : HIGH	0	570 to 572	
	16.11.1	FILTER 2 / Filter2 output monitor PIN 573	±315.00%	0.00%	573	
	16.11.2	FILTER 2 / Filter2 time constant PIN 574	0.000 – 32.000 s	1.000 s	574	
	16.16	16-BIT DEMULTIPLEX (bits 14-16) User Alarm input (PIN 712) 575, Synchronisation loss 576, Supply phase loss 577	0 : LOW 1 : HIGH	0	575 to 577	
	16.12.1	BATCH COUNTER / Counter value monitor PIN 578	0 – 32000	0	578	
	16.12.2	BATCH COUNTER / Clock input PIN 579	0 : LOW 1 : HIGH	0	579	
	16.12.3	BATCH COUNTER / Reset enable input PIN 580	0 : LOW 1 : HIGH	0	580	
	16.12.4	BATCH COUNTER / Counter target number PIN 581	0 – 32000	32000	581	
	16.12.5	BATCH COUNTER / Count >= target flag PIN 582	0 : LOW 1 : HIGH	0	582	
	16.13.1	INTERVAL TIMER / Time elapsed monitor PIN 583	0.1 – 600.0 s	0.0 s	583	
	16.13.2	INTERVAL TIMER / Timer reset enable input PIN 584	0 : DISABLED 1 : ENABLED	0	584	
	16.13.3	INTERVAL TIMER / Timer interval PIN 585	0.1 – 600.0 s	5.0 s	585	
	16.13.4	INTERVAL TIMER / Timer expired flag PIN 586	0 : LOW 1 : HIGH	0	586	
		Reserved			587	
	16.14.1	COMPARATOR 1 / Input 1 PIN 588	±300.00%	0.00%	588	
	16.14.2	COMPARATOR 1 / Input 2	±300.00%	0.00%	589	
	16.14.3	COMPARATOR 1 / Window mode select	0 : DISABLED 1 : ENABLED	0	590	
	16.14.4	COMPARATOR 1 / Hysteresis	0.00 - 10.00%	0.50%	591	
	16.14.1	COMPARATOR 2 / Input 1	±300.00%	0.00%	592	
	16.14.2	COMPARATOR 2 / Input 2	±300.00%	0.00%	593	
	16.14.3	COMPARATOR 2 / Window mode select	0 : DISABLED 1 : ENABLED	0	594	
	16.14.4	COMPARATOR 2 / Hysteresis	0.00 - 10.00%	0.50%	595	
	16.14.1	COMPARATOR 3 / Input 1	±300.00%	0.00%	596	
	16.14.2	COMPARATOR 3 / Input 2	±300.00%	0.00%	597	
	16.14.3	COMPARATOR 3 / Window mode select	0 : DISABLED 1 : ENABLED	0	598	
	16.14.4	COMPARATOR 3 / Hysteresis	0.00 - 10.00%	0.50%	599	
	16.14.1	COMPARATOR 4 / Input 1	±300.00%	0.00%	600	

PIN TABLE FOR APPLICATION BLOCKS						
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST						
Property	Paragraph number	Menu / Description	Range	Default Value	PIN	
	16.14.2	COMPARATOR 4 / Input 2	±300.00%	0.00%	601	
	16.14.3	COMPARATOR 4 / Window mode select	0 : DISABLED 1 : ENABLED	0	602	
	16.14.4	COMPARATOR 4 / Hysteresis	0.00 - 10.00%	0.50%	603	
	16.15.2	C/O SWITCH 1 / Control	0 : LOW 1 : HIGH	0	604	
	16.15.3	C/O SWITCH 1 / Input HI value	±300.00%	0.01%	605	
	16.15.4	C/O SWITCH 1 / Input LO value	±300.00%	0.00%	606	
	16.15.2	C/O SWITCH 2 / Control	0 : LOW 1 : HIGH	0	607	
	16.15.3	C/O SWITCH 2 / Input HI value	±300.00%	0.01%	608	
	16.15.4	C/O SWITCH 2 / Input LO value	±300.00%	0.00%	609	
	16.15.2	C/O SWITCH 3 / Control	0 : LOW 1 : HIGH	0	610	
	16.15.3	C/O SWITCH 3 / Input HI value	±300.00%	0.01%	611	
	16.15.4	C/O SWITCH 3 / Input LO value	±300.00%	0.00%	612	
	16.15.2	C/O SWITCH 4 / Control	0 : LOW 1 : HIGH	0	613	
	16.15.3	C/O SWITCH 4 / Input HI value	±300.00%	0.01%	614	
	16.15.4	C/O SWITCH 4 / Input LO value	±300.00%	0.00%	615	

PIN TABLE FOR DRIVE PERSONALITY						
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST						
Property	operty Paragraph Menu / Description Range Default Value					
	17.19.1	DRIVE PERSONALITY / Recipe page	0 : NORMAL RESET 1 : 2-KEY RESET 2 : 3-KEY RESET 3 : 4-KEY RESET	0	677	
S	17.19.2	DRIVE PERSONALITY / Max current response	0 : DISABLED 1 : ENABLED	0	678	
	17.19	DRIVE PERSONALITY / ID ABCXRxxx MON	Binary value	By model	679	
Р	17.19.3	DRIVE PERSONALITY / Iarm BURDEN OHMS	0.00 to 320.00	By model	680	

PIN TABLE FOR HIDDEN PINS

Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST

Paragraph number	Menu / Description	Range	Default Value	PIN
10.7.1	POWER SAVED ONCE MON	0 : LOW 1 : HIGH	0	681
17.13.4.1	DOP1 O/P BIN VAL	0 : LOW 1 : HIGH	0	682
17.13.4.1	DOP2 O/P BIN VAL	0 : LOW 1 : HIGH	0	683
17.13.4.1	DOP3 O/P BIN VAL	0 : LOW 1 : HIGH	0	684
17.11.9	DIO1 O/P BIN VAL	0 : LOW 1 : HIGH	0	685
17.11.9	DIO2 O/P BIN VAL	0 : LOW 1 : HIGH	0	686
17.11.9	DIO3 O/P BIN VAL	0 : LOW 1 : HIGH	0	687
17.11.9	DIO4 O/P BIN VAL	0 : LOW 1 : HIGH	0	688
11.4	IN JOG FLAG / In Jog mode process flag	0 : LOW 1 : HIGH	0	689
16.4.10	WEB BREAK FLAG	0 : LOW 1 : HIGH	0	690
16.1	SUM1 CH2 SUBTOT / Summer1 Ch2 subtotal monitor	±200.00%	0.00%	691
16.1	SUM1 CH1 SUBTOT / Summer1 Ch1 subtotal monitor	±200.00%	0.00%	692
16.1	SUM2 CH2 SUBTOT / Summer2 Ch2 subtotal monitor	±200.00%	0.00%	693
16.1	SUM2 CH1 SUBTOT / Summer2 Ch1 subtotal monitor	±200.00%	0.00%	694
16.4	WEB SPEED RECT.	0.00 - 105.00%	0.00%	695
16.4	REEL SPEED RECT.	0.00 - 105.00%	0.00%	696
16.4	UNFILTERED DIAMETER	0.00 - 100.00%	0.00%	697
11.6	HEALTHY FLAG / Healthy flag output	0 : LOW 1 : HIGH	0	698
11.6	READY FLAG / Ready flag output	0 : LOW 1 : HIGH	0	699
	STALL WARNING / Stall warning	0 : LOW 1 : HIGH	0	700
	REF XC WARNING / Reference exchange error warning	0 : LOW 1 : HIGH	0	701
	THERMISTOR WARN / Thermistor overtemp warning	0 : LOW 1 : HIGH	0	702
	SPEED FBK WARN / Speed feedback mismatch warning	0 : LOW 1 : HIGH	0	703
	I LOOP OFF WARN / Current loop off warning	0 : LOW 1 : HIGH	0	704
16.11	LP FILTER INPUT / Low pass filter input	±300.00%	0.00%	705
16.11	LP FILTER OUTPUT / Low pass filter output	±300.00%	0.00%	706
11.10.6	AUTOTUNE MONITOR / Autotune in progress flag	0 : LOW 1 : HIGH	0	707
	REMOTE PARAM RCV / Remote receive input	0 : LOW 1 : HIGH	0	708
11.2.3	MOTOR RPM % /Encoder RPM % mon (scaled by 12)MOT/ ENC ratio)	±300.00%	0.00%	709
11.16	POSITION COUNT / Running position counter	0 - 65535	0	710
11.16	POS CNT DIVIDER / Position count divider input	1 - 30000	1	711

PIN TABLE FOR HIDDEN PINS						
Key to Properties: R = in REDUCED MENU, P = Not changed by 4-key reset, S = STOP DRIVE TO ADJUST						
Paragraph number	Menu / Description	Range	Default Value	PIN		
13.1	USER ALARM INPUT	0 : LOW 1 : HIGH	0	712		
11.8	SPEED LOOP PI OP / Speed loop PI output monitor	±200.00%	0.00%	713		
11.4	IN SLACK FLAG / In Slack mode process flag	0 : LOW 1 : HIGH	0	714		
12.2.10	SPD FBK % UNF/ Unfiltered total speed feedback % mon	±300.00%	0.00%	715		
12.2.7	TACHO % UNF / Unfiltered analog tacho % mon	±300.00%	0.00%	716		
12.2.8	MOTOR RPM UNF / Unfiltered motor RPM monitor	±6000	0	717		
12.3.1	CUR DEMAND UNF / Unfiltered current demand monitor	±150.00%	0.00%	718		
12.3.2	CUR FBK % UNF / Unfiltered current feedback % monitor	±150.00%	0.00%	719		
11.3.9	SYSTEM RESET / System reset pulse output	0 : LOW 1 : HIGH	0	720		

Block diagram (default)

Block diagram (default)

©2024, Sprint Electric. All rights reserved.

We accept no liability whatsoever for the installation, fitness for purpose or application of this product.

It is the user's responsibility to ensure the unit is correctly used and installed.

This leaflet is protected by copyright. No part of it may be stored or reproduced in any form without written permission from Sprint Electric.

The information in this publication was correct at the time of going to print.

We reserve the right to modify or improve the product without notification.

The contents of this manual shall not become part of or modify any prior existing agreement, commitment, or relationship. The sales contract contains the entire obligation of Sprint Electric. The warranty contained in the contract between the parties is the sole warranty of Sprint Electric. Any statements contained herein do not create new warranties or modify the existing warranty.

We will be under no liability for any defect arising from fair wear and tear, negligence, wilful damage, misuse, abnormal working conditions, failure to follow the manufacturer's instructions, unauthorised alteration or repair of hardware, unauthorised or accidental alteration of software or configuration, lost profits, commercial loss, economic loss, or loss arising from personal injury. We may, at our discretion, raise a charge for any faults repaired that fall outside the warranty cover.

Sprint Electric Limited, Peregrine House, Ford Lane, Ford, Arundel <u>BN18 0DF</u>, U.K. Tel: +44 (0)1243 558080 Fax:+44 (0)1243 558099 Email: <u>info@sprint-electric.com</u>